首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Single-cell RNA sequencing technologies have revolutionized biomedical research by providing an effective means to profile gene expressions in individual cells. One of the first fundamental steps to perform the in-depth analysis of single-cell sequencing data is cell type classification and identification. Computational methods such as clustering algorithms have been utilized and gaining in popularity because they can save considerable resources and time for experimental validations. Although selecting the optimal features (i.e., genes) is an essential process to obtain accurate and reliable single-cell clustering results, the computational complexity and dropout events that can introduce zero-inflated noise make this process very challenging. In this paper, we propose an effective single-cell clustering algorithm based on the ensemble feature selection and similarity measurements. We initially identify the set of potential features, then measure the cell-to-cell similarity based on the subset of the potentials through multiple feature sampling approaches. We construct the ensemble network based on cell-to-cell similarity. Finally, we apply a network-based clustering algorithm to obtain single-cell clusters. We evaluate the performance of our proposed algorithm through multiple assessments in real-world single-cell RNA sequencing datasets with known cell types. The results show that our proposed algorithm can identify accurate and consistent single-cell clustering. Moreover, the proposed algorithm takes relative expression as input, so it can easily be adopted by existing analysis pipelines. The source code has been made publicly available at https://github.com/jeonglab/scCLUE.  相似文献   

2.
Clustering analysis of data from DNA microarray hybridization studies is an essential task for identifying biologically relevant groups of genes. Attribute cluster algorithm (ACA) has provided an attractive way to group and select meaningful genes. However, ACA needs much prior knowledge about the genes to set the number of clusters. In practical applications, if the number of clusters is misspecified, the performance of the ACA will deteriorate rapidly. We propose the Cooperative Competition Cluster Algorithm (CCCA) in this paper. In the algorithm, we assume that both cooperation and competition exist simultaneously between clusters in the process of clustering. By using this principle of Cooperative Competition, the number of clusters can be found in the process of clustering. Experimental results on a synthetic and gene expression data are demonstrated. The results show that CCCA can choose the number of clusters automatically and get excellent performance with respect to other competing methods.  相似文献   

3.
4.
5.
PK-means: A new algorithm for gene clustering   总被引:3,自引:0,他引:3  
Microarray technology has been widely applied in study of measuring gene expression levels for thousands of genes simultaneously. Gene cluster analysis is found useful for discovering the function of gene because co-expressed genes are likely to share the same biological function. K-means is one of well-known clustering methods. However, it is sensitive to the selection of an initial clustering and easily becoming trapped in a local minimum. Particle-pair optimizer (PPO) is a variation on the traditional particle swarm optimization (PSO) algorithm, which is stochastic particle-pair based optimization technique that can be applied to a wide range of problems. In this paper we bridges PPO and K-means within the algorithm PK-means for the first time. Our results indicate that PK-means clustering is generally more accurate than K-means and Fuzzy K-means (FKM). PK-means also has better robustness for it is less sensitive to the initial randomly selected cluster centroids. Finally, our algorithm outperforms these methods with fast convergence rate and low computation load.  相似文献   

6.
Hierarchical clustering is the most often used method for grouping similar patterns of gene expression data. A fundamental problem with existing implementations of this clustering method is the inability to handle large data sets within a reasonable time and memory resources. We propose a parallelized algorithm of hierarchical clustering to solve this problem. Our implementation on a multiple instruction multiple data (MIMD) architecture shows considerable reduction in computational time and inter-node communication overhead, especially for large data sets. We use the standard message passing library, message passing interface (MPI) for any MIMD systems.  相似文献   

7.
Motivation: Microarrays have allowed the expression level of thousands of genes or proteins to be measured simultaneously. Data sets generated by these arrays consist of a small number of observations (e.g., 20-100 samples) on a very large number of variables (e.g., 10,000 genes or proteins). The observations in these data sets often have other attributes associated with them such as a class label denoting the pathology of the subject. Finding the genes or proteins that are correlated to these attributes is often a difficult task since most of the variables do not contain information about the pathology and as such can mask the identity of the relevant features. We describe a genetic algorithm (GA) that employs both supervised and unsupervised learning to mine gene expression and proteomic data. The pattern recognition GA selects features that increase clustering, while simultaneously searching for features that optimize the separation of the classes in a plot of the two or three largest principal components of the data. Because the largest principal components capture the bulk of the variance in the data, the features chosen by the GA contain information primarily about differences between classes in the data set. The principal component analysis routine embedded in the fitness function of the GA acts as an information filter, significantly reducing the size of the search space since it restricts the search to feature sets whose principal component plots show clustering on the basis of class. The algorithm integrates aspects of artificial intelligence and evolutionary computations to yield a smart one pass procedure for feature selection, clustering, classification, and prediction.  相似文献   

8.
9.
Gene expression data are characterized by thousands even tens of thousands of measured genes on only a few tissue samples. This can lead either to possible overfitting and dimensional curse or even to a complete failure in analysis of microarray data. Gene selection is an important component for gene expression-based tumor classification systems. In this paper, we develop a hybrid particle swarm optimization (PSO) and tabu search (HPSOTS) approach for gene selection for tumor classification. The incorporation of tabu search (TS) as a local improvement procedure enables the algorithm HPSOTS to overleap local optima and show satisfactory performance. The proposed approach is applied to three different microarray data sets. Moreover, we compare the performance of HPSOTS on these datasets to that of stepwise selection, the pure TS and PSO algorithm. It has been demonstrated that the HPSOTS is a useful tool for gene selection and mining high dimension data.  相似文献   

10.
A Bayesian network (BN) is a knowledge representation formalism that has proven to be a promising tool for analyzing gene expression data. Several problems still restrict its successful applications. Typical gene expression databases contain measurements for thousands of genes and no more than several hundred samples, but most existing BNs learning algorithms do not scale more than a few hundred variables. Current methods result in poor quality BNs when applied in such high-dimensional datasets. We propose a hybrid constraint-based scored-searching method that is effective for learning gene networks from DNA microarray data. In the first phase of this method, a novel algorithm is used to generate a skeleton BN based on dependency analysis. Then the resulting BN structure is searched by a scoring metric combined with the knowledge learned from the first phase. Computational tests have shown that the proposed method achieves more accurate results than state-of-the-art methods. This method can also be scaled beyond datasets with several hundreds of variables.  相似文献   

11.
DNA arrays have become the immediate choice in the analysis of large-scale expression measurements. Understanding the expression pattern of genes provide functional information on newly identified genes by computational approaches. Gene expression pattern is an indicator of the state of the cell, and abnormal cellular states can be inferred by comparing expression profiles. Since co-regulated genes, and genes involved in a particular pathway, tend to show similar expression patterns, clustering expression patterns has become the natural method of choice to differentiate groups. However, most methods based on cluster analysis suffer from the usual problems (i) dead units, and (ii) the problem of determining the correct number of clusters (k) needed to classify the data. Selecting the k has been an open problem of pattern recognition and statistics for decades. Since clustering reveals similar patterns present in the data, fixing this number strongly influences the quality of the result. While there is no theoretical solution to this problem, the number of clusters can be decided by a heuristic clustering algorithm called rival penalized competitive learning (RPCL). We present a novel implementation of RPCL that transforms the correct number of clusters problem to the tractable problem of clustering based on the degree of similarity. This is biologically significant since our implementation clusters functionally co-regulated genes and genes that present similar patterns of expression. This new approach reveals potential genes that are co-involved in a biological process. This implementation of the RPCL algorithm is useful in differentiating groups involved in concerted functional regulation and helps to progressively home into patterns, which are closely similar.  相似文献   

12.
13.
14.
We discuss the clustering of 234 environmental samples resulting from an extensive monitoring program concerning soil lead content, plant lead content, traffic density, and distance from the road at different sampling locations in former East Germany. Considering the structure of data and the unsatisfactory results obtained applying classical clustering and principal component analysis, it appeared evident that fuzzy clustering could be one of the best solutions. In the following order we used different fuzzy clustering algorithms, namely, the fuzzy c-means (FCM) algorithm, the Gustafson–Kessel (GK) algorithm, which may detect clusters of ellipsoidal shapes in data by introducing an adaptive distance norm for each cluster, and the fuzzy c-varieties (FCV) algorithm, which was developed for recognition of r-dimensional linear varieties in high-dimensional data (lines, planes or hyperplanes). Fuzzy clustering with convex combination of point prototypes and different multidimensional linear prototypes is also discussed and applied for the first time in analytical chemistry (environmetrics). The results obtained in this study show the advantages of the FCV and GK algorithms over the FCM algorithm. The performance of each algorithm is illustrated by graphs and evaluated by the values of some conventional cluster validity indices. The values of the validity indices are in very good agreement with the quality of the clustering results. Figure Projection of all samples on the plane defined by the membership degrees to cluster A2, and A4 obtained using Fuzzy c-varieties (FCV) algorithm (expression of objective function and distance enclosed)  相似文献   

15.
16.
Du W  Gu T  Tang LJ  Jiang JH  Wu HL  Shen GL  Yu RQ 《Talanta》2011,85(3):1689-1694
As a greedy search algorithm, classification and regression tree (CART) is easily relapsing into overfitting while modeling microarray gene expression data. A straightforward solution is to filter irrelevant genes via identifying significant ones. Considering some significant genes with multi-modal expression patterns exhibiting systematic difference in within-class samples are difficult to be identified by existing methods, a strategy that unimodal transform of variables selected by interval segmentation purity (UTISP) for CART modeling is proposed. First, significant genes exhibiting varied expression patterns can be properly identified by a variable selection method based on interval segmentation purity. Then, unimodal transform is implemented to offer unimodal featured variables for CART modeling via feature extraction. Because significant genes with complex expression patterns can be properly identified and unimodal feature extracted in advance, this developed strategy potentially improves the performance of CART in combating overfitting or underfitting while modeling microarray data. The developed strategy is demonstrated using two microarray data sets. The results reveal that UTISP-based CART provides superior performance to k-nearest neighbors or CARTs coupled with other gene identifying strategies, indicating UTISP-based CART holds great promise for microarray data analysis.  相似文献   

17.
This paper compares the performance of two clustering methods; DPClus graph clustering and hierarchical clustering to classify volatile organic compounds (VOCs) using fingerprint-based similarity measure between chemical structures. The clustering results from each method were compared to determine the degree of cluster overlap and how well it classified chemical structures of VOCs into clusters. Additionally, we also point out the advantages and limitations of both clustering methods. In conclusion, chemical similarity measure can be used to predict biological activities of a compound and this can be applied in the medical, pharmaceutical and agrotechnology fields.  相似文献   

18.
As social network analysis is gaining popularity in modeling real world problems, the task of applying the social network model concepts and notions to biological data is still one of the most attractive research problems to be addressed. According, our work described in this paper focuses on a particular set of genes that reside on the community boundaries in gene co-expression networks. Stemmed from community mining problem in social networks, peripheries of communities (i.e., boundaries) can be used to aid certain biological analysis. The proposed method consists of three parts: 1) Finding communities of gene co-expression networks through clustering. 2) Analyzing stability of community structures by Monte Carlo method. 3) Designing of dynamic adoption of boundaries using geometric convexity. We validated our findings using breast cancer gene expression data from various studies. Our approach contributes to the new branch of applying social network mechanisms in biological data analysis, leading to new data mining strategies implied by witnessing social behaviors in gene expression analysis.  相似文献   

19.
基于遗传进化的聚类分析新方法   总被引:1,自引:0,他引:1  
提出了一种基于遗传进化策略的聚类分析新方法,将聚类问题转换为实数空间的优化问题.用遗传策略在连续的实数空间寻找最优类中心,既可避免求解组合优化问题,减少计算量,又可避免在优化过程中陷入局部最优.此遗传聚类方法用于对4组实际数据进行硬分类和模糊分类,结果令人满意.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号