首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical detection of BPA often requires modification of electrodes to overcome BPA′s slower kinetics and higher oxidation potential. This work reports a modification-free, paper electrode based on vacuum-filtered SWCNT thin film. The prepared electrode does not need to be polished or transferred into the conducting substrates. The linear sweep voltammetric detection showed a linear response from 0.5–10 μM and 25–100 μM with the experimental LOD of 1.0 μM (S/N=3). The interference study and good recovery percentage (93–105 %) in real water samples demonstrated the method‘s selectivity. The sensor can be promising for developing a simple, low-cost, portable, and paper-based BPA monitoring system.  相似文献   

2.
The use of single-walled carbon nanotube (SWNT) networks as templates for the electrodeposition of metal (Ag and Pt) nanostructures is described. Pristine SWNTs, grown on insulating SiO2 surfaces using catalyzed chemical vapor deposition, served as the working electrode. In the simplest case, electrical contact was made by depositing a gold strip on the SWNT substrate (device 1). Deposition of Ag and Pt over extensive periods (30 s) resulted in a high density of particles on the SWNTs, with almost contiguous nanowire formation from the Au/SWNT boundary moving to isolated nanoparticles at further distances from the contact. For direct electrochemical studies of Ag and Pt nucleation, the assembly was coated in a resist layer and a small window opened up to expose only the electrically connected SWNTs to solution (device 2). In this case, the electrochemical signature in voltammetric and amperometric studies of metal deposition was due solely to processes at the SWNTs. Coupled with high-resolution microscopy measurements (atomic force microscopy and field emission scanning electron microscopy), this approach provided detail on the nucleation and growth mechanisms of Ag and Pt on SWNTs under electrochemical control. In particular, Ag growth was found to be rapid and progressive with an increasing nanoparticle density with time, whereas Pt deposition was characterized by lower nucleation densities and slower growth rates with a tendency for larger particles to be produced over long times.  相似文献   

3.
The adsorption behavior of human fibrinogen (Hfg) on single-walled carbon nanotube (SWNT) films was investigated using scanning electron microscopy (SEM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It was shown in the SEM images that fibrinogen was adsorbed strongly on the surface of SWNT when the samples were incubated in the Hfg solutions for 10 min. The dependence of adsorption on the concentration of fibrinogen was also investigated and it was found that adsorption increased with increasing concentration. In order to further explore the adsorption of fibrinogen on SWNT surface, NEXAFS spectra were obtained at the N K-edge and the C K-edge. The results confirmed the conclusion regarding the dependence of adsorption on fibrinogen concentration. It is demonstrated that, due to its high sensitivity to the surface elements, NEXAFS spectroscopy is a powerful tool to investigate the adsorption of fibrinogen on SWNT films.  相似文献   

4.
Light-induced difference THz spectroscopy was used to investigate the dielectric response of free-stand single-walled carbon nanotubes (SWCNTs) films in THz region. We observed an enhanced transmission of the peak-signal of THz wave through SWCNTs films under 800 nm pump. In frequency domain, the transparency came from 0.5 to 2.1 THz and the absorption was in 2.1–3.0 THz region. The pump power dependency of the transmission showed this was a nonlinear effect. The dielectric constant response of the SWCNTs films was analyzed theoretically. The analysis suggests that the nonlinear optical properties stem from two factors, which are Drude and Lorentz term for metallic and semiconducting SWCNTs, respectively.  相似文献   

5.
Electrochemical impedance spectroscopy (EIS), coupled with chemical vapour deposition (CVD) grown single-walled carbon nanotube (SWNT) network disk-shaped ultramicroelectrodes (UMEs), gives stable, very well-defined and highly reproducible EIS responses for electrolysis of a simple outer sphere redox couple (FcTMA+/2+). The resulting EIS data can be fitted accurately using a simple electrical circuit model, enabling information on double-layer capacitance, diffusion coefficient of the electroactive species and the rate constant of ET (k0) to be extracted in a single EIS experiment. These values are replicated for a range of mediator concentrations and UME sizes (in the range 25–100 μm diameter) demonstrating the robustness of the method. These initial studies bode well for impedance based electroanalysis using SWNT network UMEs.  相似文献   

6.
Films of chemically shortened and functionalized single-walled carbon nanotubes (SWNTs) have been formed on a gold electrode by electrophoretic deposition. Applying ultrasonic energy resulted in dramatic changes of the film morphology; the deposited SWNT bundles reassembled and oriented normal to the electrode. Oriented SWNT bundles with high density (more than 250 bundles/microm (2)) not only presented narrow size distributions, but uniformly spread on the electrode. We discuss the mechanism of SWNT orientation by analyzing the variation in the film morphology with ultrasonication time. In addition, we suggest that the 3D displays of AFM images can lead to misjudgment of nanotube alignment. The method for aligning SWNTs normal to the electrode may be competitive with chemical vapor deposition or screen printing, the predominant methods by which vertically aligned SWNT films have been fabricated to date.  相似文献   

7.
Transparent and conductive single-walled carbon nanotube (SWNT) films are of great importance to a number of applications such as optical and electronic devices. Here, we describe a simple approach for preparing free-standing highly conductive transparent SWNT films with a 20-150 nm thickness by spray coating from surfactant-dispersed aqueous solutions of SWNTs synthesized by an improved floating-catalyst growth method. After the HNO(3) treatment, dipping the SWNT films supporting on glass substrates in water resulted in a quick and nondestructive self-release to form free-standing ultrathin SWNT films on the water surface. The obtained films have sufficiently high transmittance (i.e., 95%), a very low sheet resistance (i.e., ~120 Ω/sq), and a small average surface roughness (i.e., ~3.5 nm for a displayed 10 × 10 μm area). Furthermore, the floating SWNT films on the water surface were easily transferred to any substrates of interest, without intense mechanical and chemical treatments, to preserve their original sizes and network structures. For example, the transferred SWNT films on poly(ethylene terephthalate) films are mechanically flexible, which is a great advantage over conventional indium-tin oxide (ITO) and therefore strongly promise to be "post ITO" for many applications.  相似文献   

8.
A detailed study is presented on the optical absorption of thin films of single-walled carbon nanotubes (SWNT) under electrochemical conditions. The procedure for the preparation of free-standing semitransparent films of SWNT is used for the fabrication of a working electrode for transmission optical spectroelectrochemistry. The analysis of the potential dependent spectroscopic response of the SWNT film benefits from the widest possible electrochemical window, in which the charging of SWNT can safely be investigated. This electrochemical window is not limited by parasitic electrochemistry and/or galvanic breakdown reactions occurring at supporting electrode materials such as indium–tin oxide conducting glass or semitransparent Pt film, which were employed in earlier studies. Electrochemical doping of SWNT is observable at the optical absorptions, which are assigned to allowed electronic transitions between van Hove singularities in the density of states of SWNT. Furthermore, the spectral response of counterions, balancing the charging of the nanotube skeleton, is traceable at certain conditions. The latter effect is monitored here through the overtones of C–H stretching vibrations from tetrabutylammonium cations.  相似文献   

9.
The glass-transition temperatures (Tg's) of nanocomposites of polystyrene (PS) and single-walled carbon nanotubes were measured in the bulk and in thin films with differential scanning calorimetry and spectroscopic ellipsometry, respectively. The bulk Tg of the nanocomposites increased by approximately 3 °C and became much broader than that of PS. For the nanocomposite films thinner than 45 nm, Tg decreased with decreasing film thickness [i.e., ΔTg(nano) < 0]. This phenomenon also occurred in thin PS films, the magnitude of the depression in PS [ΔTg(PS)] being somewhat larger. The film thickness dependence and the differences in the magnitude of ΔTg in the two systems were examined in light of current theory, and a quantitative comparison was made. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3339–3345, 2003  相似文献   

10.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

11.
DNA oligonucleotides were covalently immobilized to prepatterned single-walled carbon nanotube (SWNT) multilayer films by amidation. SWNT multilayer films were constructed via consecutive condensation reactions creating stacks of functionalized SWNT layers linked together by 4,4'-oxydianiline. Aminated- or carboxylated-DNA oligonucleotides were covalently immobilized to the respective carboxylated or aminated SWNT multilayer films through amide bond formation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. UV-vis-NIR spectroscopic analysis indicated that the SWNT film surface density increased uniformly according to the number of reaction cycles. Scanning electron microscopy and contact angle measurements of the SWNT multilayer film revealed a uniform coverage over the substrate surface. The covalent attachment of DNA oligonucleotides to the SWNT multilayer films and their subsequent hybridization with complementary oligonucleotides were verified using X-ray photoelectron spectroscopy and fluorescence-based measurements. This is the first report demonstrating that DNA oligonucleotides can be covalently attached to immobilized SWNT multilayer films. The anchored DNA oligonucleotides were shown to exhibit excellent specificity, realizing their potential in future biosensor applications.  相似文献   

12.
Structural Chemistry - The detection methods used to analyze abused drugs should be sensitive sufficiently. Here in, we propose carbon nanotube (CNT) functionalized with COOH and CONHCH3 groups as...  相似文献   

13.
Single-walled carbon nanotubes (SWNTs) have been used successfully to fabricate highly transparent and flexible field emission displays (FEDs). Field emission measurements indicated that SWNTs films have great potential to work as building blocks for next generation transparent and flexible FEDs.  相似文献   

14.
This work reports the first detailed study on an electrochemical impedance sensor for determination of polychlorinated biphenyl (PCB), such as 3,3',4,4'-tetrachlorobiphenyl (PCB-77), based on a single-walled carbon nanotube/pyrenecyclodextrin (SWCNT/PyCD) hybrid.  相似文献   

15.
16.
A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.  相似文献   

17.
We have investigated the electrochemical genosensing properties of gold nanoparticle–carbon nanotube hybrid. Thiolated oligonucleotide probes and mercaptohexanol were self-assembled onto the Au–CNT hybrid. The hybridization events of target oligonucleotides are monitored using electrochemical impedance spectroscopy, cyclic voltammetry and a.c. voltammetry techniques. A redox-active mediator is used to detect the oxidation of guanine residues. The as-fabricated genosensor is able to differentiate between complementary and mismatched hybridizations, relying on the oxidation current of the guanine residues mediated via .  相似文献   

18.
We describe the design, synthesis, and characterization of a supramolecular hybrid of gold nanometals and semiconducting single-walled carbon nanotubes (SWNTs) wrapped by a porphyrin-fluorene copolymer (1), as well as fabrication of a thin-film transistor (TFT) device using the hybrid. Photoluminescence mapping revealed that the copolymer selectively dissolved SWNTs with chirality indices of (8,6), (8,7), (9,7), (7,6), and (7,5); dissolution of (8,6), and (8,7) SWNTs was especially efficient. The solubilized SWNTs were connected to gold nanoparticles (AuNPs) via a coordination bond to prepare a supramolecular hybrid composed of AuNPs/copolymer 1-wrapped SWNTs, which were studied by atomic force and scanning and transmission electron microscopies. A fabricated TFT device using the semiconducting SWNTs/copolymer 1 shows evident p-type transport with an On/Off ratio of ~10(5). The transport properties of the TFT changed after coordination of the AuNPs with the SWNTs/copolymer 1.  相似文献   

19.
A convenient method to obtain patterns of films of single-walled carbon nanotubes (SWNT) bundles on flexible plastic is described. Using the Line Patterning method SWNT films of thickness ranging from approximately 300-1500 nm can be obtained from aqueous surfactant-supported dispersions of chemically purified SWNT bundles synthesized by the pulsed-laser ablation method. These films are strongly adherent and are competitive in performance with commercially available films of indium-tin-oxide (ITO) on plastics. For example, an approximately 1500 thick film of SWNT on poly(ethylene terephthalate) (PET) shows a surface resisitvity of approximately 80 Omega/sq, optical transparency >80%, and robust flexibility. Unlike ITO/PET, films of SWNT/PET can be folded and bent to a crease without cracking. The simple techniques involoved in obtaining these films (i.e., those without requiring lithography or ink-jet printing) could help facilitate the rapid fabrication of transparent, flexible electronic devices, heralding what promises to be a new approach towards the development of next-generation optoelectronic devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号