首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of Zhang’s model (see [P. Fergola, J. Zhang, M. Cerasuolo, Z.E. Ma, On the influence of quorum sensing in the competition between bacteria and immune system of invertebrates, in: Collective Dynamic: Topics on Competition and Cooperation in the Biosciences: A Selection of Papers in the Proceedings of the BIOCOMP2007 International Conference, AIP Conference Proceedings, vol. 1028, 2008, pp. 215-232] for more details), we formulate a bacteria-immunity model to describe the competition between bacteria and immune cells with bacterial quorum sensing mechanism. A time delay is introduced to characterize the time in which bacteria receive signal molecules and then combat with immune cells. Subsequently, the length of delay which preserves the stability of the positive equilibrium is estimated and Hopf bifurcation occurs when time delay crosses through a critical value are researched. Further, by using the normal form theory and center manifold theory, the explicit formulaes are calculated which determine the stability, the direction and the period of bifurcating periodical solutions. Finally, numerical simulations are employed to verify the mathematical conclusions.  相似文献   

2.
Considering the mechanism of quorum sensing, we formulate a bacteria-immunity model to describe the competition between bacteria and immune cells on the basis of Zhang’s model (see Zhang et al. 2008, to appear, for more details). A distributed delay is introduced to characterize the time in which bacteria receive signal molecules and then combat with immune cells. We analyze the stability of the equilibrium points and discuss the existence of Hopf bifurcation near the positive equilibrium point. Finally, numerical simulation is carried out to illustrate our qualitative results.  相似文献   

3.
A bacteria-immunity model with bacterial quorum sensing is formulated, which describes the competition between bacteria and immune cells. A distributed delay is introduced to characterize the time in which bacteria receive signal molecules and then combat with immune cells. In this paper, we focus on a subsystem of the bacteria-immunity model, analyze the stability of the equilibrium points, discuss the existence and stability of periodic solutions bifurcated from the positive equilibrium point, and finally investigate the stability of the nonhyperbolic equilibrium point by the center manifold theorem.  相似文献   

4.
In this paper, Hopf bifurcation for two-species Lotka–Volterra competition systems with delay dependence is investigated. By choosing the delay as a bifurcation parameter, we prove that the system is stable over a range of the delay and beyond that it is unstable in the limit cycle form, i.e., there are periodic solutions bifurcating out from the positive equilibrium. Our results show that a stable competition system can be destabilized by the introduction of a maturation delay parameter. Further, an explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by using the theory of normal forms and center manifolds, and numerical simulations supporting the theoretical analysis are also given.  相似文献   

5.
This paper considers a delayed human respiratory model. By choosing time delay as a parameter, the stability of the equilibrium of the model is investigated and the conditions which guarantee the existence of local and global Hopf bifurcation are derived. Finally, these results are illustrated by numerical simulations of a specific version of the system.  相似文献   

6.
In this paper, we consider the stability of equilibria, Hopf and double Hopf bifurcation in Liu system with delay feedback. Firstly, we identify the critical values for stability switches and Hopf bifurcationusing the method of bifurcation analysis. When we choose appropriate feedback strength and delay, two symmetrical nontrivial equilibria of Liusystem can be controlled to be stable at the same time, and the stable bifurcating periodic solutions occur in the neighborhood of the two equilibria at the same time. Secondly, by applying the normal form method and center manifold theory,the normal form near the double Hopf bifurcation, as well as classifications of local dynamics are analyzed. Furthermore, we give the bifurcation diagram to illustrate numerically that a family of stable periodic solutions bifurcated from Hopf bifurcation occur in a large region of delay and the Liu system with delay can appear the phenomenon of ``chaos switchover''.  相似文献   

7.
We consider a delayed predator-prey system. We first consider the existence of local Hopf bifurcations, and then derive explicit formulas which enable us to determine the stability and the direction of periodic solutions bifurcating from Hopf bifurcations, using the normal form theory and center manifold argument. Special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu [Trans. Amer. Math. Soc. 350 (1998) 4799], we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are also given.  相似文献   

8.
In this paper, a delayed predator-prey system with Holling type III functional response incorporating a prey refuge and selective harvesting is considered. By analyzing the corresponding characteristic equations, the conditions for the local stability and existence of Hopf bifurcation for the system are obtained, respectively. By utilizing normal form method and center manifold theorem, the explicit formulas which determine the direction of Hopf bifurcation and the stability of bifurcating period solutions are derived. Finally, numerical simulations supporting the theoretical analysis are given.  相似文献   

9.
In this paper, we consider a delayed Lotka–Volterra predator–prey system with a single delay. By regarding the delay as the bifurcation parameter and analyzing the characteristic equation of the linearized system of the original system at the positive equilibrium, the linear stability of the system is investigated and Hopf bifurcations are demonstrated. In particular, the formulae determining the direction of the bifurcations and the stability of the bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. Finally, numerical simulations supporting our theoretical results are also included.  相似文献   

10.
In this paper, we investigate the stability and Hopf bifurcation of a diffusive predator-prey system with herd behaviour. The model is described by introducing both time delay and nonlocal prey intraspecific competition. Compared to the model without time delay, or without nonlocal competition, thanks to the together action of time delay and nonlocal competition, we prove that the first critical value of Hopf bifurcation may be homogenous or non-homogeneous. We also show that a double-Hopf bifurcation occurs at the intersection point of the homogenous and non-homogeneous Hopf bifurcation curves. Furthermore, by the computation of normal forms for the system near equilibria, we investigate the stability and direction of Hopf bifurcation. Numerical simulations also show that the spatially homogeneous and non-homogeneous periodic patters.  相似文献   

11.
In this article, a novel four dimensional autonomous nonlinear systezm called hyperchaotic Rikitake system is proposed. Basic properties of the new system are investigated and the complex dynamical behaviors, such as time series, bifurcation diagram, and Lyapunov exponents are analyzed by dynamic analysis approaches. To control the new hyperchaotic system, the delayed feedback control is introduced. Regarding the time delay as a bifurcation parameter, stability and bifurcations with respect to time delay are investigated. Conditions assuring the existence of Hopf bifurcation and the distribution of roots to the associated characteristic equation are investigated by utilizing the polynomial theorem. Besides, the Hopf bifurcation is proved to occur when the bifurcation parameter (time delay) crosses through derived critical value. Finally, numerical simulations are provided to prove the consistence with the derived theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 180–193, 2016  相似文献   

12.
The dynamics of a Nicholson's blowflies equation with a finite delay are investigated. We prove that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the theory of normal form and center manifold. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu (Trans. Amer. Math. Soc. 350 (1998) 4799), and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney (J. Differential Equations 106 (1994) 27).  相似文献   

13.
Washout filter is a simple filter that can be designed easily. In this paper, a system for controlling a neural equation with discrete time delay based on Washout filter is presented. The transcendental equation of the corresponding linearized system is analyzed. In this control system, it is found that Hopf bifurcation occurs when the control parameters are chosen properly and that a chaotic orbit can be controlled to a stable periodic solution. The stability condition for bifurcating periodic solutions and the direction of Hopf bifurcation are studied by applying the normal form theory and the center manifold theorem. Some numerical results are also presented to illustrate the correctness of our results.  相似文献   

14.
A kind of three-species system with Holling II functional response and two delays is introduced. Its local stability and the existence of Hopf bifurcation are demonstrated by analyzing the associated characteristic equation. By using the normal form method and center manifold theorem, explicit formulas to determine the direction of the Hopf bifurcation and the stability of bifurcating periodic solution are also obtained. In addition, the global existence results of periodic solutions bifurcating from Hopf bifurcations are established by using a global Hopf bifurcation result. Numerical simulation results are also given to support our theoretical predictions.  相似文献   

15.
On the basis of the newly developed pseudo-oscillator analysis, the local dynamics near a Hopf bifurcation of a nonlinear delayed system of machine tool vibration is investigated in this paper. Starting from a pseudo-oscillator that is slightly perturbed from an undamped oscillator, the pseudo-oscillator analysis shows that near the Hopf bifurcation, the local dynamics can be justified simply by the properties of the averaged pseudo-power function. Unlike the widely used approaches such as the center manifold reduction, the pseudo-oscillator analysis involves very easy computation and gives prediction of the local dynamics with high accuracy.  相似文献   

16.
A neural network model with three neurons and a single time delay is considered. Its linear stability is investigated and Hopf bifurcations are demonstrated by analyzing the corresponding characteristic equation. In particular, the explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and the center manifold theorem. In order to illustrate our theoretical analysis, some numerical simulations are also included in the end.  相似文献   

17.
18.
The dynamics of a logistic equation with discrete delay are investigated, together with the local and global stability of the equilibria. In particular, the conditions under which a sequence of Hopf bifurcations occur at the positive equilibrium are obtained. Explicit algorithm for determining the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are derived by using the theory of normal form and center manifold [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981.]. Global existence of periodic solutions is also established by using a global Hopf bifurcation result of Wu [Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc 350:1998;4799–38.]  相似文献   

19.
通过非线性动力学理论,对时滞类Lorenz系统在平衡点的稳定性问题和发生Hopf分岔的条件进行了研究.首先计算得到系统的平衡点,然后通过分析系统在平衡点处的相应特征方程根的分布,得到系统在平衡点局部渐近稳定和产生Hopf分岔的时滞临界点.以时滞为分叉参数,研究了时滞系统存在Hopf分岔的条件.最后,利用Matlab程序进行仿真验证所得结论与理论分析一致.本文的结论是对一些已有文献研究成果的推广.  相似文献   

20.
We consider the dynamical behavior of a delayed two-coupled oscillator with excitatory-to-inhibitory connection. Some parameter regions are given for linear stability, absolute synchronization, and Hopf bifurcations by using the theory of functional differential equations. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also investigate the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. Finally, numerical simulations are given to illustrate the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号