首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a mathematical model is proposed to study the role of toxin producing phytoplankton on a phytoplankton–zooplankton system with nutrient cycling. The model includes three state variables, viz., nutrient concentration, phytoplankton biomass and zooplankton biomass. It is assumed in the model that phytoplankton biomass is producing toxicant harmful for the zooplankton biomass. All the feasible equilibria of the system are obtained and the conditions for the existence of the interior equilibrium are determined. The local stability analysis of all the feasible equilibria are carried out and the possibility of Hopf-bifurcation of the interior equilibrium is studied. The threshold value in terms of constant input rate of nutrient is determined both analytically and numerically.  相似文献   

2.
We have studied the combined effect of toxicant and fluctuation of the biological parameters on the dynamical behaviors of a delayed two-species competitive system with imprecise biological parameters. Due to the global increase of harmful phytoplankton blooms, the study of dynamic interactions between two competing phytoplankton species in the presence of toxic substances is an active field of research now days. The ordinary mathematical formulation of models for two competing phytoplankton species, when one or both the species liberate toxic substances, is unable to capture the oscillatory and highly variable growth of phytoplankton populations. The deterministic model never predicts the sudden localized behavior of certain species. These obstacles of mathematical modeling can be overcomed if we include interval variability of biological parameters in our modeling approach. In this investigation, we construct imprecise models of allelopathic interactions between two competing phytoplankton species as a parametric differential equation model. We incorporate the effect of toxicant on the species in two different cases known as toxic inhibition and toxic stimulatory system. We have discussed the existence of various equilibrium points and stability of the system at these equilibrium points. In case of toxic stimulatory system, the delay model exhibits a stable limit cycle oscillation. Analytical findings are supported through exhaustive numerical simulations.  相似文献   

3.
In this paper, a nonlinear mathematical model is proposed and analyzed to study the survival of resource-dependent competing species. It is assumed that competing species and its resource are affected simultaneously by a toxicant emitted into the environment from external sources as well as formed by precursors of competing species. Stabilities of all the equilibria are studied using the theory of differential equations and computer simulation. A condition which determines the persistence of the system is also obtained. It is concluded from the analysis that as the cumulative rates of emission and formation of toxicants into the environment increase, the densities of both competing species and its resource decrease. It is also concluded that the usual competitive outcomes for the resource biomass altered in the presence of precursors.  相似文献   

4.
An SIS epidemic model in two competing species with the mass action incidence is formulated and analysed. Thresholds for the existence of boundary equilibria are identified and conditions for their local asymptotic stability or instability are found. By persistence theory, conditions for the persistence of either hosts or pathogens are proved. Using Hopf bifurcation theory and numerical simulations, some aspects of the complicated dynamic behaviours of the model are shown: the system may have zero up to three internal equilibria, may have a stable limit cycle, may have three stable attractors. Through the results on persistence and stability of the boundary equilibria, some important interactions between infection and competition are revealed: (1) a species that would become extinct without the infection, may persist in presence of the infection; (2) a species that would coexist with its competitor without the infection, is driven to extinction by the infection; (3) an infection that would die out in either species without the interinfection of disease, may persist in both species in presence of this factor.  相似文献   

5.
In this paper, we consider the two similar competing species in a competition unstirred chemostat model with diffusion. The two competing species are assumed to be identical except for their maximal growth rates. In particular, we study the existence and stability of the coexistence states, and the semi-trivial equilibria or the unique coexistence state is the global attractor can be established under some suitable conditions. Our mathematical approach is based on Lyapunov–Schmidt reduction, the implicit function theory and spectral theory.  相似文献   

6.
In this article, we propose and study a generalized Ricker–Beverton–Holt competition model subject to Allee effects to obtain insights on how the interplay of Allee effects and contest competition affects the persistence and the extinction of two competing species. By using the theory of monotone dynamics and the properties of critical curves for non-invertible maps, our analysis show that our model has relatively simple dynamics, i.e. almost every trajectory converges to a locally asymptotically stable equilibrium if the intensity of intra-specific competition intensity exceeds that of inter-specific competition. This equilibrium dynamics is also possible when the intensity of intra-specific competition intensity is less than that of inter-specific competition but under conditions that the maximum intrinsic growth rate of one species is not too large. The coexistence of two competing species occurs only if the system has four interior equilibria. We provide an approximation to the basins of the boundary attractors (i.e. the extinction of one or both species) where our results suggests that contest species are more prone to extinction than scramble ones are at low densities. In addition, in comparison to the dynamics of two species scramble competition models subject to Allee effects, our study suggests that (i) Both contest and scramble competition models can have only three boundary attractors without the coexistence equilibria, or four attractors among which only one is the persistent attractor, whereas scramble competition models may have the extinction of both species as its only attractor under certain conditions, i.e. the essential extinction of two species due to strong Allee effects; (ii) Scramble competition models like Ricker type models can have much more complicated dynamical structure of interior attractors than contest ones like Beverton–Holt type models have; and (iii) Scramble competition models like Ricker type competition models may be more likely to promote the coexistence of two species at low and high densities under certain conditions: At low densities, weak Allee effects decrease the fitness of resident species so that the other species is able to invade at its low densities; While at high densities, scramble competition can bring the current high population density to a lower population density but is above the Allee threshold in the next season, which may rescue a species that has essential extinction caused by strong Allee effects. Our results may have potential to be useful for conservation biology: For example, if one endangered species is facing essential extinction due to strong Allee effects, then we may rescue this species by bringing another competing species subject to scramble competition and Allee effects under certain conditions.  相似文献   

7.
疾病在食饵中流行的捕食与被捕食模型的分析   总被引:1,自引:1,他引:0  
分析并建立了疾病在食饵中传播的生态-传染病模型,同时考虑到两种群都受密度制约因素的影响,讨论了模型解的有界性和各平衡点的存在性,利用Routh-Hurwitz判据证明了各平衡点的局部渐进稳定性,通过构造Lyapunov函数分析了各平衡点的全局渐进稳定性,得到了疾病存在与否的充分性条件.  相似文献   

8.
In this study, we consider a mathematical model of two competing prey and one predator system where the prey species follow Lotka–Volterra‐type dynamics and the predator uptake functions are ratio dependent. We have derived the conditions for existence of different boundary equilibria and discussed their global behaviour. The sufficient condition for permanent co‐existence of all the species is derived. Finally, we have discussed the possibility of extinction of the species from the system. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
It is observed that in large animals only adult predators take part in direct predation while suckling feed on milk of adult predators and juveniles are dependent on the dead prey stock killed by the adult predators. Some parts of the dead prey population is consumed by adult predators and remaining parts are consumed by juveniles and the remaining portion decays naturally. In light of this, a mathematical model is proposed to study the stability and bifurcation behaviour of a prey–predator system with age based predation. All the feasible equilibria of the system are obtained and the conditions for the existence of the interior equilibrium are determined. The local stability analysis of all the feasible equilibria is carried out and the possibility of Hopf-bifurcation of the interior equilibrium is studied. Finally, numerical simulation is conducted to support the analytical results.  相似文献   

10.
Treatment is of great importance in fighting against infectious diseases. In this paper, we investigate a disease transmission model of SEIR type with quadratic treatment function. We consider r as the parameter which describes the societal effort to fight the infection. It is found that the system has four possible equilibria when r changes. Moreover, the existence and stability of equilibria of the model are discussed. Finally, the complex dynamics of the system are displayed by numerical simulations such as bi-stability, backward bifurcations.  相似文献   

11.
This paper deals with the problem of a ratio-dependent prey-predator model with combined harvesting. The existence of steady states and their stability are studied using eigenvalue analysis. Boundedness of the exploited system is examined. We derive conditions for persistence and global stability of the system. The possibility of existence of bionomic equilibria has been considered. The problem of optimal harvest policy is then solved by using Pontryagin’s maximal principle.  相似文献   

12.
ABSTRACT

In [A.S. Ackleh, M.I. Hossain, A. Veprauskas, and A. Zhang, Persistence and stability analysis of discrete-time predator-prey models: A study of population and evolutionary dynamics, J. Differ. Equ. Appl. 25 (2019), pp. 1568–1603.], we established conditions for the persistence and local asymptotic stability of the interior equilibrium for two discrete-time predator–prey models (one without and with evolution to resist toxicants). In the current paper, we provide a more in-depth analysis of these models, including global stability of equilibria, existence of cycles and chaos. Our main focus is to examine how the speed of evolution ν may impact population dynamics. For both models, we establish conditions under which the interior equilibrium is global asymptotically stable using perturbation analysis together with the construction of Lyapunov functions. For small ν, we show that the global dynamics of the evolutionary system are nothing but a continuous perturbation of the non-evolutionary system. However, when the speed of evolution is increased, we perform numerical studies which demonstrate that evolution may introduce rich dynamics including cyclic and chaotic behaviour that are not observed when evolution is absent.  相似文献   

13.
利用Lyapunov-Schmidt约化方法和扰动理论,研究了一类带有不同种内竞争率的两物种竞争扩散模型.首先给出了半平凡稳态解的存在性和稳定性的充分条件,表明在一定条件下新物种可以入侵.在此基础上进一步证实了共存态的存在性和稳定性,研究表明在适当条件下相互竞争的两物种能够共存.所得结果改进和完善了已有的工作.  相似文献   

14.
1. IntroductionOne of the more challenging aspects of mathematical biology is competition modelling.Although the mathematical idea is simple[1], this type of modelling is so difficult to carryout in any generality since there are so maily ways for a population to compete.The simplest form of competition is called eXPloitative competition. This occurs whenone or more populations compete for the same resources such as a common food supplyor a growth-limiting nutriellt. A simple example of this…  相似文献   

15.
A nonlinear dynamical system which describe the time evolution of n-competitors in a Cournot game (Bowley's model) with bounded rationality is analyzed. The existence and stability of the equilibria of this system is studied. The stability conditions of the steady states for two and three players are explicitly computed. Complex behavior such as cycles and chaotic behavior are observed by numerical simulation. Delayed Bowley's with bounded rationality in monopoly is studied. We show that firms using bounded rationality with delay has a higher chance of reaching Nash equilibrium.  相似文献   

16.
Microalgae culture fed with ammonium may face the presence of nitrifying bacteria. The aim of this paper is to propose and analyze a nonlinear system which represents the dynamics of these two species (microalgae and nitrifying bacteria) in competition for nitrogen (present as ammonium and nitrate produced by nitrification) in a continuous process. The existence and local stability of system equilibria is studied. Reduction by conservation principle, perturbed systems and Lyapunov methods are used to provide sufficient conditions for the global asymptotic stability of the system equilibria. Finally, we illustrate our analysis with a case study, showing which operating conditions (dilution rate and pond depth) can promote the presence of nitrifiers with microalgae.  相似文献   

17.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

18.
A mathematical model for the quantitative analysis of cancer immune interaction, considering the role of humoral (antibody) mediated immune response with two time delays, namely maturation and interaction delays has been proposed in this paper. The aim of this work is to assess the effect of time delays on the interaction between cancerous cells and the antibodies. After categorizing the parametric plane into different regions based on the existence of equilibria, we investigate both analytically and through simulations, the stability of equilibria and the onset of sustained oscillations through Hopf bifurcations. The direction and stability of the Hopf bifurcation which occurs at the positive interior equilibrium point of the system have also been studied. It is observed that both the delays play an important role in stability switching. Appropriate therapy with a proper choice of system parameters are suggested to obtain cancer free equilibrium.  相似文献   

19.
In this present article, we propose and analyze a cannibalistic predator–prey model with disease in the predator population. We consider two important factors for the dynamics of predator population. The first one is governed through cannibalistic interaction, and the second one is governed through the disease in the predator population via cannibalism. The local stability analysis of the model system around the biologically feasible equilibria are investigated. We perform global dynamics of the model using Lyapunov functions. We analyze and compare the community structure of the system in terms of ecological and disease basic reproduction numbers. The existence of Hopf bifurcation around the interior steady state is investigated. We also derive the sufficient conditions for the permanence and impermanence of the system. The study reveals that the cannibalism acts as a self-regulatory mechanism and controls the disease transmission among the predators by stabilizing the predator–prey oscillations.  相似文献   

20.
Xinzhi Ren 《Applicable analysis》2013,92(13):2329-2358
A reaction–diffusion system of two bacteria species competing a single limiting nutrient with the consideration of virus infection is derived and analysed. Firstly, the well-posedness of the system, the existence of the trivial and semi-trivial steady states, and some prior estimations of the steady states are given. Secondly, a single species subsystem with virus is studied. The stability of the trivial and semi-trivial steady states and the uniform persistence of the subsystem are obtained. Further, taking the infective ability of virus as a bifurcation parameter, the global structure of the positive steady states and the effect of virus on the positive steady states are established via bifurcation theory and limiting arguments. It shows that the backward bifurcation may occur. Some sufficient conditions for the existence, uniqueness and stability of the positive steady state are also obtained. Finally, some sufficient conditions on the existence of the positive steady states for the full system are derived by using the fixed point index theory. Some results on persistence or extinction for the full system are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号