首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Vacancy defects of catalysts have been extensively studied and proven to be beneficial to various electrocatalytic reactions. Herein, an ultra‐stable three‐dimensional PtCu nanowire network (NNW) with ultrafine size, self‐supporting rigid structure, and Cu vacancy defects has been developed. The vacancy defect‐rich PtCu NNW exhibits an outstanding performance for the oxygen reduction reaction (ORR), with a mass activity 14.1 times higher than for the commercial Pt/C catalyst (20 %.wt, JM), which is currently the best performance. The mass activity of the PtCu NNW for methanol oxidation reaction (MOR) is 17.8 times higher than for the commercial Pt/C catalyst. Density‐functional theory (DFT) calculations indicate that the introduction of Cu vacancies enhances the adsorption capacity of Pt atoms to the HO* intermediate and simultaneously weakens the adsorption for the O* intermediate. This work presents a facile strategy to assemble efficient electrocatalysts with abundant vacancy defects, at the same time, provides an insight into the ORR mechanism in acidic solution.  相似文献   

2.
We report on the synthesis, characterization, and electrochemical performance of novel, ultrathin Pt monolayer shell-Pd nanowire core catalysts. Initially, ultrathin Pd nanowires with diameters of 2.0 ± 0.5 nm were generated, and a method has been developed to achieve highly uniform distributions of these catalysts onto the Vulcan XC-72 carbon support. As-prepared wires are activated by the use of two distinctive treatment protocols followed by selective CO adsorption in order to selectively remove undesirable organic residues. Subsequently, the desired nanowire core-Pt monolayer shell motif was reliably achieved by Cu underpotential deposition followed by galvanic displacement of the Cu adatoms. The surface area and mass activity of the acid and ozone-treated nanowires were assessed, and the ozone-treated nanowires were found to maintain outstanding area and mass specific activities of 0.77 mA/cm(2) and 1.83 A/mg(Pt), respectively, which were significantly enhanced as compared with conventional commercial Pt nanoparticles, core-shell nanoparticles, and acid-treated nanowires. The ozone-treated nanowires also maintained excellent electrochemical durability under accelerated half-cell testing, and it was found that the area-specific activity increased by ~1.5 fold after a simulated catalyst lifetime.  相似文献   

3.
Electrochemical dehydrogenative oxidation of cyclohexane to benzene is studied over Pt and Pt1Rh1 nanowire electrocatalysts fabricated by electrospinning method, which shows the higher catalytic activities in a polymer electrolyte membrane fuel cell anode than the conventional Pt nanoparticle catalysts such as carbon-supported Pt or Pt black. The improved performances over the Pt1Rh1 nanowire electrocatalyst can be rationalized by enhanced electrical property and pertinent interface formation with nanowire catalysts in the high Pt-loaded cyclohexane fuel cell system.  相似文献   

4.
Highly ordered Pd/Pt–core–shell nanowire arrays (Pd/Pt NWAs) have been prepared by anodized aluminum oxide (AAO) template-electrodeposition and magnetron sputtering methods. Pd/Pt NWA electrode shows a very high electrochemical active surface area and high electrocatalytic activity for the methanol electrooxidation in acid medium for direct methanol fuel cells (DMFCs). The mass specific anodic peak current density is 756.7 mA mg−1 Pt for the methanol oxidation on the Pd/Pt NWA electrode, an increase by a factor of four as compared to conventional E-TEK PtRu/C electrocatalysts. The mechanism of the significant enhancement of the Pd/Pt core/shell NWA nanostructure in the efficiency and electrocatalytic activity of Pt for the methanol electrooxidation in acid medium is discussed.  相似文献   

5.
质子交换膜燃料电池Pt纳米线电催化剂研究现状   总被引:2,自引:0,他引:2  
严泽宇  李冰  杨代军  马建新 《催化学报》2013,34(8):1471-1481
质子交换膜燃料电池(PEMFC)能直接将化学能转换为电能,具有能量转换效率高、环境友好、启动快等优点.其中电催化剂是决定PEMFC性能、寿命及成本的关键材料之一.目前所采用的Pt催化剂成本较高,是阻碍其商业化的主要因素.而Pt纳米线电催化剂的Pt利用率和催化剂活性高,抗CO毒性以及耐久性好.本文综述了Pt纳米线电催化剂的制备及其电化学催化性能的研究现状.  相似文献   

6.
Co49Pt51 nanowire arrays with an average diameter of 35 nm and lengths up to several micrometers were grown in an ordered porous anodic aluminum oxide (AAO) template using direct-current electrodeposition. The as-deposited samples were annealed at 100, 200, 300, 400, 500, 600, and 700 degrees C, respectively. The temperature dependence of the magnetic property of the Co49Pt51 nanowire arrays associated with the microstructure was analyzed by X-ray diffraction and a vibrating sample magnetometer. Magnetic measurements show that the samples both as-prepared and annealed at low temperatures have excellent perpendicular anisotropy. The perpendicular coercivity (Hc(perpendicular)) of Co49Pt51 alloy nanowire arrays increases dramatically as the annealing temperature (T(A)) rises, reaches a maximum(Hc(perpendicular) = 2770 Oe) at 400 degrees C, and then decreases sharply as T(A) rises further. This phenomenon should be attributed to the special structure of the nanowire arrays/AAO, and the microstructure factors significantly change during the annealing process.  相似文献   

7.
采用阳极氧化铝(AAO)模板法电化学沉积制备了Pt纳米线阵列(Pt NWs)氧还原催化剂, 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学测试对Pt纳米线阵列催化剂的形貌和电催化性能进行了表征. 循环伏安法(CV)研究表明Pt纳米线阵列催化剂的电化学活性面积大于其几何面积; 旋转圆盘电极(RDE)测试研究发现, 制备的Pt纳米线阵列催化剂的氧还原反应(ORR)曲线的半波电势相对Pt/C的有正移, 并且Pt纳米线阵列催化剂的极限扩散电流比Pt/C大.  相似文献   

8.
为研究纳米线的形成机理,通过密度泛函理论(DFT)研究了贵金属(铂)在脱质子化1,3-环加成石墨烯上的吸附.研究发现:(1)吸附在1,3-环加成石墨烯上的铂原子引起该结构的脱质子化过程并形成脱质子化1,3-环加成石墨烯;(2)贵金属在脱质子化1,3-环加成石墨烯上的锚定位是氮原子邻位的碳原子,这在邻位碳原子的平均巴德电荷分析(高达1.0e)中得到进一步的证实;(3)铂原子在相邻的脱质子化吡啶炔单元上形成金属纳米线,并且该纳米线比相应的铂团簇稳定得多;(4)电子结构分析表明,铂的吸附并没有从根本上改变脱质子化1,3-环加成石墨烯的电子性质.铂金属的掺杂使得Pt6团簇吸附形成的复合物呈现金属性,而Pt6纳米线形成的复合物则为半金属性.  相似文献   

9.
Surfactants or capping agents are usually employed to control the shapes and sizes of metal nanowires (NWs). Polyvinylpyrrolidone (PVP) and oleylamine (OAm) are the most common capping agents used in the synthesis of metal nanowires. However, these capping agents bind strongly onto the surface of the nanowires and severely prevent the reactant molecules from entering the active sites. In the present research, a facile acetic acid/NaBH4 treatment technology is reported to effectively remove PVP and OAm from the surface of the co‐doped Pt NWs. Interestingly, the morphology of poor crystalline platinum nanowires treated with NaBH4 solution is transformed into nanowire networks (NWNs) with higher crystallinity. Furthermore, in comparison with the commercial Pt/C catalyst, the catalytic activity of co‐doped Pt NWNs with clean surfaces shows improvements of up to 4.1 times for mass activity and 5.1 times for specific activity, respectively.  相似文献   

10.
提出了一种室温条件下构筑铂覆盖硅纳米线阵列的有效方法.通过将种子生长法和化学沉积技术的有机结合,高质量的铂纳米结构被成功地构筑在硅纳米线阵列表面.采用扫描电镜、X-射线衍射和电化学方法对制备材料的形貌和性质进行了表征.结果表明:所沉积的铂膜具有多孔三维结构,展现了一个放大的电化学活性面积,是相同几何面积硅片电极的6.1...  相似文献   

11.
A new type of platinum nanowire with a bumpy surface "Pt nanoworm" is electrochemically synthesized in mesochannels of mesoporous silica films with the assistance of a nonionic surfactant (C(16)EO(8)).  相似文献   

12.
Solution-grown single-crystal Ge nanowires were used as conductive channels in field effect transistor devices to study the influence of surface states on their electron transport properties. Nanowires contacted with Pt electrodes using focused ion beam metal deposition exhibited linear current-voltage (IV) curves at room temperature with apparent resistivities ranging from 10(1) to 10(-1) Omega cm. In all cases, the nanowire conductance decreased with positive external electric fields applied perpendicular to the nanowire surface by a gate electrode, characteristic of p-type carrier accumulation at the nanowire surface. The field-induced change in conductance exhibited a time-dependent relaxation, with response time and magnitude of current decrease that depended on the nanowire surface chemistry. Nanowires treated with an organic passivation layer using a thermally initiated hydrogermylation reaction exhibited 2 orders of magnitude slower current relaxation and a smaller decrease in current relative to "bare" nanowires with oxidized surfaces.  相似文献   

13.
Nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst were prepared by electroless deposition with anodic aluminum oxide template. Pt-Pd composite catalyst was deposited on the arrays by displacement reaction. SEM images show that the nickel nanowires have an average diameter of 100 nm and the nickel nanotubes have an average inner diameter of 200 nm. EDS scanning reveals that elemental Pt and Pd disperse uniformly on the arrays. Cyclic voltammetry study indicates that the nickel nanotube array loaded with Pt-Pd possesses a higher electrochemical activity for ethanol oxidation than the nickel nanowire array with Pt-Pd.  相似文献   

14.
Three‐dimensional (3D) Pt‐based alloy nanostructures composed of one‐dimensional (1D) nanowires/nanorods have recently attracted significant interest as electrocatalysts. In this work, we report an effective solvothermal method for the direct preparation of 3D Pt–Co nanowire assemblies (NWAs) with tunable composition. The composition‐ and structure‐dependent electrocatalytic performance is thoroughly investigated. Because of the bimetallic synergetic effect and unique structural advantage, the as‐prepared 3D Pt3Co NWA outperforms commercial Pt/carbon and Pt black catalysts and even 3D Pt NWA. The electrochemical results demonstrate that the 3D Pt3Co NWA is indeed a promising electrocatalyst with enhanced catalytic activity and improved durability for practical electrocatalytic applications.  相似文献   

15.
LiMo 3Se 3 nanowire film sensors were fabricated by drop-coating a 0.05% (mass) aqueous nanowire solution onto microfabricated indium tin oxide electrode pairs. According to scanning electron microscopy (SEM) and atomic force microscopy (AFM), the films are made of a dense network of 3-7 nm thick nanowire bundles. Immersion of the films in 1.0 M aqueous solutions of group 1 or 2 element halides or of Zn(II), Mn(II), Fe(II), or Co(II) chlorides results in an increase of the electrical resistance of the films. The resistance change is always positive and reaches up to 9% of the base resistance of the films. It occurs over the course of 30-240 s, and it is reversible for monovalent ions and partially reversible for divalent ions. The signal depends on the concentration of the electrolyte and on the size and charge of the metal cation. Anions do not play a significant role, presumably, because they are repelled by the negatively charged nanowire strands. The magnitude of the electrical response and its sign suggest that it is due to analyte-induced scattering of conduction electrons in the nanowires. An ion-induced field effect can be excluded based on gated conductance measurements of the nanowire films.  相似文献   

16.
Well‐ordered mesoporous Pt nanoparticles (MPNs) with uniform olive shapes are synthesized by using two‐dimensional (2D) hexagonal mesoporous silica (SBA‐15) as a hard template. The average particle sizes are controllable in the range of 150 to 230 nm by changing the reduction time. Low‐angle XRD profiles for the obtained MPNs show three distinct peaks assignable to the (10), (11), and (20) planes of a highly ordered 2D hexagonal symmetry. From high‐magnification SEM images, periodically arranged Pt nanowires are observed clearly, which are a negative replica of the 2D hexagonally ordered mesoporous silica (SBA‐15). Furthermore, the single crystallinity of the Pt fcc structure coherently extends over the whole particles. As a result of such unique character as well as high surface area, the obtained MPNs show distinctly enhanced electrocatalytic properties for methanol oxidation reaction compared to other Pt samples, such as Pt black.  相似文献   

17.
A newly designed and fabricated novel three dimensional (3D) nanocomposite composed of single‐crystal Pt nanowires (PtNW) and a coaxial nanocable support consisting of a tin nanowire and a carbon nanotube (Sn@CNT) is reported. This nanocomposite is fabricated by the synthesis of Sn@CNT nanocables by means of a thermal evaporation method, followed by the direct growth with PtNWs through a facile aqueous solution approach at room temperature. Electrochemical measurements demonstrate that the PtNW? Sn@CNT 3D electrode exhibits enhanced electrocatalytic performance in oxygen reduction reaction (ORR) for polymer electrolyte membrane fuel cells (PEMFCs), methanol oxidation (MOR) for direct methanol fuel cells (DMFCs), and CO tolerance compared with commercial ETEK Pt/C catalyst made of Pt nanoparticles.  相似文献   

18.
Nanowire solar cells: Pt nanoparticle (PtNP) decorated C/Si core/shell nanowire photoelectrochemical solar cells show high conversion efficiency of 10.86 % and excellent stability in aggressive electrolytes under 1-sun AM 1.5 G illumination. Superior device performance is achieved by improved surface passivation of the nanowires by carbon coating and enhanced interfacial charge transfer by PtNPs.  相似文献   

19.
Hybrid Pt/TiO(2) nanostructures with diverse morphologies from nanodot, nanowire to mesoporous structures were obtained by a one-step synthesis based on block copolymer self-assembly. The structural transformation was easily tuned by controlling the relative amount of TiO(2) sol-gel precursor to poly(styrene-block-ethylene oxide) diblock copolymer (PS-b-PEO). These Pt/TiO(2) nanocomposites were utilized as photocatalysts with enhanced activity via synergistic coupling. Key parameters including the amount of TiO(2), types of morphology of photocatalysts, and the platinization of TiO(2) discussed in this study affected photocatalytic performance given that the hybrids were well-dispersed in nanopatterned configurations.  相似文献   

20.
We report a new type of water-soluble ultrathin Au-Ag alloy nanowire (NW), which exhibits unprecedented behavior in a colloidal solution. Upon growth of a thin metal (Pd, Pt, or Au) layer, the NW winds around itself to give a metallic double helix. We propose that the winding originates from the chirality within the as-synthesized Au-Ag NWs, which were induced to untwist upon metal deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号