首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cobalt-free cubic perovskite oxide, SrFe0.9Nb0.1O3?δ (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm0.2Ce0.8O1.9 (SDC) for temperatures up to 1050 °C. The electrical conductivity of SFN sample reached 34–70 S cm?1 in the commonly operated temperatures of IT-SOFCs (600–800 °C). The area specific resistance was 0.138 Ω cm2 for SFN cathode on SDC electrolyte at 750 °C. A maximum power density of 407 mW cm?2 was obtained at 800 °C for single-cell with 300 μm thick SDC electrolyte and SFN cathode.  相似文献   

2.
Anode-supported solid oxide fuel cells (SOFCs) based on thin BaZr0.8Y0.2O3 ? δ (BZY) electrolyte films were fabricated by pulsed laser deposition (PLD) on sintered NiO–BZY composite anodes. After in situ reduction of NiO to Ni, the anode substrates became porous, while retaining good adhesion with the electrolyte. A slurry-coated composite cathode made of La0.6Sr0.4Co0.2Fe0.8O3 ? δ (LSCF) and BaCe0.9Yb0.1O3 ? δ (BCYb), specifically developed for proton conducting electrolytes, was used to assemble fuel cell prototypes. Depositing by PLD 100 nm thick LSCF porous films onto the BZY thin films was essential to improve the cathode/electrolyte adhesion. A power density output of 110 mW/cm2 at 600 °C, the largest reported value for an anode-supported fuel cell based on BZY at this temperature, was achieved. Electrochemical impedance spectroscopy (EIS) measurements were used to investigate the different contributions to the total polarization losses.  相似文献   

3.
A cost-effective cell fabrication process was developed for intermediate temperature solid oxide fuel cells (IT-SOFCs). Co-doped ceria Ce0.8Gd0.05Y0.15O1.9 (GYDC) was synthesized by carbonate co-precipitation method. Lithiated NiO was prepared by glycine-nitrate combustion method and adopted as cathode material for IT-SOFCs. Single cell was fabricated by one-step dry-pressing and co-firing anode, anode functional layer (AFL), electrolyte and cathode together at 1200 °C for 4 h. The cell presented decent performance and an overall electrode polarization resistance of 0.54 Ω cm2 has been achieved at 600 °C. These results demonstrate the possibility of using lithiated NiO as cathode material for ceria-based IT-SOFCs and the development of affordable fuel cell devices is encouraged.  相似文献   

4.
Composite cathodes were synthesized via a citrate combustion method followed by an organic precipitation method. The cathodes were of K2NiF4-type crystal structure with x wt.% Ce0.9Gd0.1O1.95 (CGO)–(100 ? x) wt.% La1.96Sr0.04CuO4 + δ (LSC), where x = 0, 10, 20 and 30. The individual structural phases of the composite cathodes were characterized using a third-generation synchrotron source beamline powder X-ray diffractometer (XRD). The porous grain morphology of the CGO–LSC cathode composite for a symmetrical half-cell was determined from cross-sectional scanning electron microscopy images and elemental line profiles. The composite cathode was made of 20 wt.% CGO–80 wt.% LSC (CL20–80) and was coated onto a Ce0.9Gd0.1O1.95 electrolyte. It showed the lowest area specific resistance (ASR) of 0.07 Ω cm2 at 750 °C. An electrolyte-supported (300 μm thick) single-cell configuration of CL20–80/CGO/Ni-CGO attained a maximum power density of 626 mW cm? 2 at 700 °C. The unique composite composition of CL20–80 demonstrates enhanced electrochemical performance and good chemical compatibility with the CGO electrolyte, as compared with the pure LSC (CL0–100) cathode for IT-SOFCs.  相似文献   

5.
Transition-metal doped double-perovskite structure oxides GdBaCo2/3Fe2/3Ni2/3O5+δ (FN-GBCO), GdBaCo2/3Fe2/3Cu2/3O5+δ (FC-GBCO), GdBaCoCuO5+δ (C-GBCO) and pristine GdBaCo2O5+δ (GBCO) were synthesized via a citrate combustion method. The thermal-expansion coefficient (TEC) and electrochemical performance of the oxides were investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TEC exhibited by the FC-GBCO cathode up to 900 °C is 14.6 × 10?6 °C?1, which is lower than the value of GBCO (19.9 × 10?6 °C?1). Area specific resistances (ASR) of 0.165 Ω cm2 at 700 °C and 0.048 Ω cm2 at 750 °C were achieved for the FC-GBCO cathode on a Ce0.9Gd0.1O1.95 (CGO) electrolyte. An electrolyte supported (300 μm thick) single-cell configuration of FC-GBCO/CGO/Ni-CGO attained a maximum power density of 435 mW cm?2 at 700 °C. The unique composition of GBCO co-doped with Fe and Cu ions in the Co sites exhibited reduced TEC and enhancement of electrochemical performance and good chemical compatibility with CGO, and this composition is proving to be a potential cathode for IT-SOFCs.  相似文献   

6.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

7.
The electrochemical performance of La0.4Sr0.6Co0.8Fe0.2O3−δ (LSCF) cathodes with different nano/microstructures is compared using the area specific resistance (ASR). Cathodes are prepared using two chemical routes, including a novel method to obtain nanosized LSCF oxide. The results clearly point that the intermediate temperature solid oxide fuel cells (IT-SOFC) cathode performance strongly depends on microstructure and that ASR can vary more than two orders of magnitude for identical composition and different morphologies, reaching values as low as 0.05 Ω cm2 at 600 °C and 0.4 Ω cm2 at 450 °C using the novel chemical route, which are even lower than the best known cathodes for IT-SOFC.  相似文献   

8.
This paper emphasises the electrochemical and catalytic properties of a Ni–10% GDC (10% gadolinium-doped ceria) cermet anode of a single-chamber solid oxide fuel cell (SC-SOFC). Innovative coupling of electrochemical impedance spectroscopy with gas chromatography measurements was carried out to characterise the anode material using an operando approach. The experiments were conducted in a symmetric anode/electrolyte/anode cell prepared by slurry coating resulting in 100 μm-thick anode layers. The electrochemical performance was assessed using a two-electrode arrangement between 400 °C and 650 °C, in a methane-rich atmosphere containing CH4, O2 and H2O in a 14:2:6 volumetric ratio. The insertion of a Pt–CeO2 based catalyst with high specific surface area inside the cermet layer was found to promote hydrogen production from the Water Gas Shift reaction and consequently to improve the electrochemical performances. Indeed, a promising polarisation resistance value of 12 Ω cm2 was achieved at 600 °C with a catalytic loading of only 15 wt.%.  相似文献   

9.
A high performance cathode-supported solid oxide fuel cell (SOFC), suitable for operating in weakly humidified hydrogen and methane, has been developed. The SOFC is essentially made up by a YSZ/LSM composite supporting cathode, a thin YSZ film electrolyte, and a GDC-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode. A gas tight thin YSZ film (∼27 μm) was formed during the co-sintering of cathode/electrolyte bi-layer at 1200 °C. The cathode-supported SOFC developed in this study showed encouraging performance with maximum power density of 0.182, 0.419, 0.628 and 0.818 W cm−2 in air/3% H2O–97% H2 (and 0.06, 0.158, 0.221 and 0.352 W cm−2 in air/3% H2O–97% CH4) at 750, 800, 850 and 900 °C, respectively. Such performance is close to that of the cathode-supported cell (0.42 W cm−2 vs. 0.455 W cm−2 in humidified H2 at 800 °C) developed by Yamahara et al. [Solid State Ionics 176 (2005) 451–456] with a Co-infiltrated supporting LSM-YSZ cathode, a (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89 (SYSZ) electrolyte of 15 μm in thickness and a SYSZ/Ni anode, indicating that the performance of the GDC-impregnated LSCM anode is comparable to that made of Ni cermet while stable in weakly humidified methane fuel.  相似文献   

10.
A large area cathode-supported electrolyte film, comprising porous (La0.8Sr0.2)0.95MnO3 (LSM95) cathode substrate, LSM95/Zr0.89Sc0.1Ce0.01O2?x (SSZ) cathode active layer, and SSZ electrolyte, has been successfully fabricated by tape casting and co-sintering techniques. The interface reaction between cathode and electrolyte was inhibited by using A-site deficient LSM. A dense enough SSZ thin film with a thickness of ~26 μm was obtained at 1250 °C. By using Pt as anode, the obtained single cell reached the maximum power density of 0.54 W cm?2 at 800 °C in O2/humidified H2, with open circuit voltage (OCV) value of 1.08 V.  相似文献   

11.
A cathode-supported electrolyte film was fabricated by tape casting and co-sintering techniques. (La0.8Sr0.2)0.95MnO3 (LSM95), LSM95/Zr0.89Sc0.1Ce0.01O2?x (SSZ), and SSZ were used as materials of cathode substrate, cathode active layer, and electrolyte, respectively. CuO–NiO–SSZ composite anode was deposited on SSZ surface by screen-printing and sintered at 1250 °C for 2 h. The effects of CuO addition to NiO–SSZ anode on the performance of cathode-supported SOFCs were investigated. CuO can effectively improve the sintering activity of NiO–SSZ. The assembled cells were electrochemically characterized with humidified H2 as fuel and O2 as oxidant. With 4 wt.% CuO addition, the ohmic resistance decreased from 3 to 0.46 Ω cm2, and at the same time the polarization resistance decreased from 3.4 to 0.74 Ω cm2. In comparison with the cell without CuO, the maximum power density at 850 °C increased from 0.054 to 0.446 W cm?2 with 4 wt.% CuO addition.  相似文献   

12.
Preliminary progress is reported in this communication in building a planar anode-supported low-temperature solid oxide fuel cell (SOFC) stack based on gadolinia-doped ceria (GDC) electrolyte, i.e. fabrication and characterization of a Ø80 planar bilayer structure composed of GDC electrolyte film and Ni–GDC anode substrate. The anode substrates were prepared from mixtures of NiO, GDC, and carbon black by die-pressing. After pre-firing to remove the carbon black, the anode substrates were deposited with a GDC layer using a spray coating technique. The green bilayers of anode substrate and electrolyte film were then co-sintered at 1500 °C for 3 h. Through proper control of the sintering process, bilayer structures with excellent flatness were achieved after co-sintering. Scanning electron microscopy (SEM) observation indicated that the electrolyte film was about 22 μm in thickness, highly dense, crack-free, and well-bonded to the anode substrate. Small disks which were cut out from the Ø80 bilayer structure were electrochemically examined in a single button-cell mode incorporating a (LaSr)(CoFe)O3–GDC composite cathode. With humidified hydrogen as the fuel and air as the oxidant, the cell demonstrated an open-circuit voltage of 0.884 V and a maximum power density of 562 mW/cm2 at 600 °C. The results imply that high-quality anode-supported electrolyte/anode bilayer structures were successfully fabricated. Based on them, planar anode-supported SOFC stacks will be assembled in the future.  相似文献   

13.
Micro-tubular solid-oxide fuel cell consisting of a 10-μm thick (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (ScSZ) electrolyte on a support NiO/(ScSZ) anode (1.8 mm diameter, 200 μm wall thickness) with a Ce0.8Gd0.2O1.9 (GDC) buffer-layer and a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)/GDC functional cathode has been developed for intermediate temperature operation. The functional cathode was in situ formed by impregnating the well-dispersed nano-Ag particles into the porous LSCF/GDC layer using a citrate method. The cells yielded maximum power densities of 1.06 W cm−2 (1.43 A cm−2, 0.74 V), 0.98 W cm−2 (1.78 A cm−2, 0.55 V) and 0.49 W cm−2 (1.44 A cm−2, 0.34 V), at 650, 600 and 550 °C, respectively.  相似文献   

14.
The thin membrane of BaCe0.8Sm0.2O3−δ (BCS) with high quality was successfully fabricated on porous NiO–BCS anode substrate through a novel in situ reaction method. The key part of this method is to directly spray well-mixed suspension of BaCO3, CeO2 and Sm2O3 instead of pre-synthesized BCS ceramic powder on the anode substrate. After sintering at 1400 °C for 5 h, the extremely dense electrolyte membrane in the thickness of 10 μm is obtained. A single cell was assembled with La0.7Sr0.3FeO3−σ as cathode and tested with humidified hydrogen as fuel at 650 °C. The open circuit voltage (OCV) and maximum power density respectively reach 1.04 V and 535 mW/cm2. Interface resistance of cell under open circuit condition was also investigated.  相似文献   

15.
A novel single phase BaCe0.5Bi0.5O3 ? δ (BCB) was employed as a cathode material for a proton-conducting solid oxide fuel cell (SOFC). The single cell, consisting of a BaZr0.1Ce0.7Y0.2O3 ? δ (BZCY7)-NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane and a BCB cathode layer, was assembled and tested from 600 to 700 °C with humidified hydrogen (~3% H2O) as the fuel and the static air as the oxidant. An open-circuit potential of 0.96 V and a maximum power density of 321 mW cm?2 were obtained for the single cell. A relatively low interfacial polarization resistance of 0.28Ω cm2 at 700 °C indicated that the BCB was a promising cathode material for proton-conducting SOFCs.  相似文献   

16.
BaCO3 nanoparticles are demonstrated as outstanding electrocatalysts to enhance the high temperature oxygen reduction reaction (ORR) in solid oxide fuel cells (SOFCs). BaCO3 nanoparticles are formed from thermal decomposition of barium acetate, Ba(Ac)2 infiltrated to porous cathode skeleton and shows good chemical compatibility with cathode materials. BaCO3 nanoparticles can greatly reduce the area specific resistance (ASR) of typical SOFC cathode materials, including La0.8Sr0.2FeO3  (LSF), La0.6Sr0.4Co0.2Fe0.8O3  (LSCF) and La0.8Sr0.2MnO3  (LSM). For example at 700 °C, ASR for LSF on yttria-stabilized zirconia (YSZ) electrolyte decreases from 2.95 Ω cm2 to 0.77 Ω cm2 when 12.9 wt.% BaCO3 nanoparticles are deposited on the surface of the porous LSF electrode. Impedance spectra analysis shows that the decrease in ASR mainly comes from the reduction of the low frequency resistance. Furthermore, BaCO3 nanoparticles are found to greatly enhance the oxygen chemical exchange coefficient. Most importantly, it has been found that the catalytic activity of BaCO3 nanoparticles is even higher than those of the precious metals such as Pd, Rh, Pt and Ag, infiltrated into LSF, LSCF and LSM electrodes supported on YSZ electrolytes.  相似文献   

17.
The polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF)-infiltrated Ce0.9Gd0.1O1.95 cathodes was quantitatively explained using a simple model where the resistance scaled directly with the LSCF surface area, as estimated from cross-sectional fracture surfaces. The Tanner, Fung, Virkar composite cathode model was also applied and showed that ionic transport in these 25-μm-thick cathodes was not a significant limitation at 600 °C, but became more limiting at 700 °C. Calculated polarization resistances were within ~40% (without fitting parameters) of reported values.  相似文献   

18.
A mixed ionic and electronic conductor, BaPr0.8In0.2O3  δ (BPI), was synthesized and examined as a cathode material for proton-conducting solid oxide fuel cells (H-SOFCs). X-ray diffraction analysis revealed that BPI had a perovskite structure and showed satisfactory tolerance to CO2 and H2O and good chemical compatibility with BaZr0.1Ce0.7Y0.1 Yb0.1O3  δ (BZCYYb) electrolyte. Test cells with a single-phase BPI cathode exhibited excellent electrochemical performances, demonstrating a peak power density of ~ 688 mW cm 2 at 750 °C. Furthermore, the cells with a BPI cathode showed very stable power output at a cell voltage of 0.7 V at 600 °C over 100 h, suggesting that BPI is a promising alternative cathode for H-SOFCs.  相似文献   

19.
Coal syngases of various CO/H2 ratios were used as the fuel over anode of solid oxide fuel cells. Anode materials of La0.58Sr0.4Co0.2Fe0.8O3?δ (LSCF)–gadolinia-doped ceria (GDC) composites and Ni-added LSCF–GDC were tested. The maximum power density of CO is higher than that of H2 and increases as the CO concentration in the CO + H2 mixture increases. As the LSCF content in the LSCF–GDC composites increases, the H2 reactivity increases but the CO reactivity decreases. The maximum power density of Ni-added LSCF–GDC is highest but the steady-state current density of LSCF–GDC can be higher than that of Ni-added LSCF–GDC via an induction period of activation.  相似文献   

20.
The low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte (1.0 M LiPF6/EC+DMC+DEC+EMC (1:1:1:3, v/v)) was studied. The discharge capacities of the LiFePO4/C cathode were about 134.5 mAh/g (20 °C), 114 mAh/g (0 °C), 90 mAh/g (−20 °C) and 69 mAh/g (−40 °C) using a 1C charge–discharge rate. Cyclic voltammetry measurements show obviously sluggish of the lithium insertion–extraction process of the LiFePO4/C cathode as the operation temperature falls below −20 °C. Electrochemical impedance analyses demonstrate that the sluggish of charge-transfer reaction on the electrolyte/LiFePO4/C interface and the decrease of lithium diffusion capability in the bulk LiFePO4 was the main performance limiting factors at low-temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号