首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a novel projective synchronization scheme called adaptive generalized function projective lag synchronization (AGFPLS) is proposed. In the AGFPLS method, the states of two different chaotic systems with fully uncertain parameters are asymptotically lag synchronized up to a desired scaling function matrix. By means of the Lyapunov stability theory, an adaptive controller with corresponding parameter update rule is designed for achieving AGFPLS between two diverse chaotic systems and estimating the unknown parameters. This technique is employed to realize AGFPLS between uncertain Lü chaotic system and uncertain Liu chaotic system, and between Chen hyperchaotic system and Lorenz hyperchaotic system with fully uncertain parameters, respectively. Furthermore, AGFPLS between two different uncertain chaotic systems can still be achieved effectively with the existence of noise perturbation. The corresponding numerical simulations are performed to demonstrate the validity and robustness of the presented synchronization method.  相似文献   

2.
3.
This article aims to introduce a projective synchronization approach based on adaptive fuzzy control for a class of perturbed uncertain multivariable nonaffine chaotic systems. The fuzzy‐logic systems are employed to approximate online the uncertain functions. A Lyapunov approach is used to design the parameter adaptation laws and to demonstrate the boundedness of all signals of the closed‐loop system as well as the convergence of the synchronization errors to bounded residual sets. Finally, numerical simulation results are presented to verify the feasibility and effectiveness of the proposed synchronization system based on fuzzy adaptive controller. © 2014 Wiley Periodicals, Inc. Complexity 21: 180–192, 2015  相似文献   

4.
This paper investigates the modified function projective synchronization (MFPS) between two different dimensional chaotic systems with fully unknown or partially unknown parameters via increased order. Based on the Lyapunov stability theorem and adaptive control method, a unified adaptive controller and parameters update law can be designed for achieving the MFPS of the two different chaotic systems with different orders. Numerical simulations are presented to show the effectiveness of the proposed synchronization scheme.  相似文献   

5.
In this paper, an approach for adaptive synchronization of uncertain chaotic systems is proposed using adaptive backstepping with tuning functions. Strong properties of global stability and asymptotic synchronization can be achieved. The proposed approach offers a systematic design procedure for adaptive synchronization of a large class of continuous-time chaotic systems in the chaos research literature. Simulation results are presented to show the effectiveness of the approach.  相似文献   

6.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

7.
An adaptive modified projective synchronization (AMPS) is proposed to acquire a general kind of proportional relationship between the drive and response systems. Based on the Lyapunov stability theory, a nonlinear control scheme for the synchronization has been presented. The control performances are verified by numerical simulations.  相似文献   

8.
In this paper, a practical projective synchronization problem of master–slave chaotic systems is investigated. More specifically, a fuzzy adaptive slave chaotic system subject to dead-zone nonlinearity in the input channel is proposed using only the measurable output of the master system thanks to a suitable observer. A practical projective synchronization between the master and slave systems is achieved by an adequate fuzzy adaptive control system. The underlying parameter adaptation design as well as stability analysis are carried out using a Lyapunov based approach. Unlike the previous works, in the design of the proposed synchronization scheme, we do not require to know the uncertainties function and that the dynamics of the original synchronization error are strictly positive real (SPR). In fact, herein, the uncertainties function is estimated by a fuzzy adaptive system and the dynamics of the original synchronization error are augmented by a low pass filter designed to satisfy the SPR condition. Simulation results are given to show the effectiveness of the proposed practical projective synchronization scheme.  相似文献   

9.
In this paper, the exponential generalized synchronization for a class of coupled systems with uncertainties is defined. A novel and powerful method is proposed to investigate the generalized synchronization based on the adaptive control technique. According to the Lyapunov stability theory, rigorous proof is given for the exponential stability of error system. In comparison with previous schemes, the presented method shortens the synchronization time and is more applicable in practice. Besides, it is shown that the synchronization effect is robust against the uncertain factors. Some typical chaotic and hyper-chaotic systems are taken as examples to illustrate above approach. The corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

10.
This article is concerned with the modified projective synchronization problem for a class of four-dimensional chaotic system with uncertain parameters. By utilizing Lyapunov method, an adaptive control scheme for the synchronization has been presented. The control performances are verified by a numerical simulation.  相似文献   

11.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of adaptive synchronization between two nearly identical chaotic and hyper-chaotic systems with uncertain parameters is studied. Based on Lyapunov stability theory, a novel adaptive synchronization controller is designed, and the analytic expression of the controller and the adaptive laws of parameters are developed. The controller is simple and systemic, no parameters of the slave system are included in the controller, and, for some specific error systems, the controller can be simplified ulteriorly. New chaotic and a new hyper-chaotic systems with uncertain parameters are taken as the examples to show the effectiveness of the proposed adaptive synchronization method.  相似文献   

12.
This paper addresses the modified function projective lag synchronization (MFPLS) for a class of chaotic systems with unknown external disturbances. The disturbances are supposed to be generated by the exogenous systems. By using the disturbance-observer-based control and the linear matrix inequality approach, the disturbance observers are developed to ensure the boundedness of the disturbance error dynamics. Then by employing the sliding mode control (SMC) technique, an active SMC law is established to guarantee the disturbance rejection and realize MFPLS between the master and slave systems. And the corresponding numerical simulation is provided to illustrate the effectiveness of the proposed method.  相似文献   

13.
We report on generalized projective synchronization between two identical time delay chaotic systems with single time delays. It overcomes some limitations of the previous work where generalized projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve generalized projective synchronization in infinite-dimensional chaotic systems. This method allows us to arbitrarily direct the scaling factor onto a desired value. Numerical simulations show that this method works very well.  相似文献   

14.
This letter investigates the function projective synchronization between fractional-order chaotic systems. Based on the stability theory of fractional-order systems and tracking control, a controller for the synchronization of two fractional-order chaotic systems is designed. This technique is applied to achieve synchronization between the fractional-order Lorenz systems with different orders, and achieve synchronization between the fractional-order Lorenz system and fractional-order Chen system. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

15.
This paper investigates the quadratic optimal synchronization of uncertain chaotic systems with parameter mismatch, parametric perturbations and external disturbances on both master and slave systems. A robust control scheme based on Lyapunov stability theory and quadratic optimal control approach is derived to realize chaotic synchronization. The sufficient criterion for stability condition is formulated in a linear matrix inequality (LMI) form. The effect of uncertain parameters and external disturbance is suppressed to an H norm constraint. An adaptive algorithm is proposed to adjust the uncertain bound in the robust controller avoiding the chattering phenomena. The simulation results for synchronization of the Chua’s circuit system and the Lorenz system demonstrate the effectiveness of the proposed scheme.  相似文献   

16.
This paper is involved with the adaptive modified function projective synchronization (MFPS) problem of hyperchaotic systems with unknown parameters. Based on the Lyapunov stability theorem and adaptive control method, adaptive controllers and parameters update laws can be presented for the MFPS not only between two identical hyperchaotic systems but particularly also between two different hyperchaotic systems with fully unknown or partially unknown parameters. Moreover, the coupling strength can be automatically adapted to a updated law. Numerical simulations are presented to show the effectiveness of the proposed synchronization schemes.  相似文献   

17.
In this paper, a new type of anticipating synchronization, called time-varying anticipating synchronization, is defined firstly. Then novel adaptive schemes for time-varying anticipating synchronization of certain or uncertain chaotic dynamical systems are designed based on the Lyapunov function and invariance principle. The update gain of coupling strength can be automatically adapted to a suitable strength depending on the initial values and can be properly chosen to adjust the speed of achieving synchronization, so these schemes are analytical and simple to implement in practice. A classical chaotic dynamical system is used to demonstrate the effectiveness of the proposed adaptive schemes with or without parameter uncertainties.  相似文献   

18.
This paper deals with chaos synchronization between two different uncertain fractional order chaotic systems based on adaptive fuzzy sliding mode control (AFSMC). With the definition of fractional derivatives and integrals, a fuzzy Lyapunov synthesis approach is proposed to tune free parameters of the adaptive fuzzy controller on line by output feedback control law and adaptive law. Moreover, chattering phenomena in the control efforts can be reduced. The sliding mode design procedure not only guarantees the stability and robustness of the proposed AFSMC, but also the external disturbance on the synchronization error can be attenuated. The simulation example is included to confirm validity and synchronization performance of the advocated design methodology.  相似文献   

19.
Linear generalized synchronization of continuous-time chaotic systems   总被引:3,自引:0,他引:3  
This paper develops a general approach for constructing a response system to implement linear generalized synchronization (GS) with the drive continuous-time chaotic system. Some sufficient conditions of global asymptotic linear GS between the drive and response continuous-time chaotic systems are attained from rigorously modern control theory. Finally, we take Chua’s circuit as an example for illustration and verification.  相似文献   

20.
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Rössler hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号