首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Formation of copper -diketonates in electrolysis of a solution of acetylacetone in acetonitrile in the presence of oxygen, with tetraethylammonium bromide as supporting electrolyte, was studied.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 11, 2004, pp. 1804–1807.Original Russian Text Copyright © 2004 by Kostyuk.  相似文献   

2.
The application of random assemblies of microdisks (RAM™ electrodes) to electrochemical studies is described. These devices have working surfaces intersected by hundreds or thousands of disk-shaped microelectrodes that are capacitively, resistively, and diffusively independent. They therefore produce current–time responses of the same form as single microelectrodes, but many times larger. This property allows experimental data to be obtained on the benchtop without shielding and without significant mains interference — something that is impossible with single microelectrodes. The design criteria of random assemblies are summarized, and examples of their utility in a wide range of electrochemical experiments are given.  相似文献   

3.
A β-4-(2-isopropyl-5-methylphenoxylphthalocyaninato)titanium(IV) oxide (TiOPc) was prepared and characterized by MS, 1H NMR, and elemental analysis. Cyclic voltammograms show that this TiOPc has two quasi-reversible reduction couples and two quasi-reversible to irreversible oxidations processes. The first reductions are two-electron processes, confirmed by spectroelectrochemistry to be due to TiIVPc2−/TiIIIPc3− redox processes. The second reductions are two-electron processes during which TiIIIPc3− was reduced to TiIIIPc5− species. Spectroelectrochemistry showed that oxidation occurs at the ring during the first oxidation. However, spectroelectrochemistry also showed that upon the second oxidation, the molecule decomposes. Chronocoulometry confirmed transfer of two electrons at the first and second reduction steps. Published in Elektrokhimiya in Russian, 2008, Vol. 44, No. 12, pp. 1466–1472. The text was submitted by author in English.  相似文献   

4.
Cyclopentadienyl cobalt complexes (n5-C5H4R)CoLI2 [L = CO,R=-COOCH2CH=CH2 (3); L=PPh3,R=-COOCH2-CH=CH2 (6); L= P(p-C6H4CH3)3,R=-COOC(CH3) = CH2 (7),-COOCH2C6H5(8),-COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses,1H NMR,IR and UV-vis spectra.The reaction of complexes (n5-C5H4R)CoLI2[L=CO,R=-COOC(CH3)=CH2 (1) ,-COOCH2C6H5(2):L=PPh3,R =-COOC(CH3)=CH2 (4),-COOCH2C6H5(5)] with Na-Hg resulted in the formation of their corresponding substituted cobaltocene (n5-C5H4R)2Co [R= -COOC(CH3) = CH2 (10),-COOCH2C6H5 (11) ].The electrochemical properties of these complexes 1-11 were studied by cyclic voltammetry.It was found that as the ligand (L) of the cobalt (Ⅲ) complexes changing from CO to PPh3 and P(p-tolyl)3,their oxidation potentials increased gradually.The cyclic voltammetry of α,α'-substituted cobaltocene showed reversible oxidation of one electron pro-  相似文献   

5.
Copper is an essential element in the environment and the human body,but at the same time,exposure to high concentrations of Cu~(2+) ions will potentially lead to acute toxicity and various neurodegenerative diseases.Thus,it is of great significance for the development of highly sensitive and selective strategies for the detection of Cu~(2+) ions.Here,we report a highly efficient poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)(PEDOT:PSS) based organic electrochemical transistor(OECT)sensor,for real-time Cu~(2+) ions detection.The detection limit of the OECT device is as low as 100 nM,far beyond the sensitivity required for practical uses.The detection mechanism may base on the chemical reactivity of Cu~(2+) ions oxiding the PEDOT:PSS in solution both in absence and presence of the base potential.The OECT devices also exhibit excellent selective response to Cu~(2+)ions rather than other metal ions.Finally,we also demonstrate the determination of Cu~(2+) ions in tap water with the OECT Cu~(2+)sensor.Considering the high sensitivity and selectivity,as well as the real-time and low cost features of our Cu~(2+) OECT sensor,it is ideal for portable and disposable applications for environment monitoring and public health.  相似文献   

6.
SrCo(0.8)Fe(0.2)O(3-δ) is a controversial material whether it is used as an oxygen permeable membrane or as a cathode of solid oxide fuel cells. In this paper, carefully synthesized powders of perovskite-type Sr(x)Co(0.8)Fe(0.2)O(3-δ) (x = 0.80-1.20) oxides are utilized to investigate the effect of A-site nonstoichiometry on their electrochemical performance. The electrical conductivity, sintering property and stability in ambient air of Sr(x)Co(0.8)Fe(0.2)O(3-δ) are critically dependent on the A-site nonstoichiometry. Sr(1.00)Co(0.8)Fe(0.2)O(3-δ) has a single-phase cubic perovskite structure, but a cobalt-iron oxide impurity appears in A-site cation deficient samples and Sr(3)(Co, Fe)(2)O(7-δ) appears when there is an A-site cation excess. It was found that the presence of the cobalt-iron oxide improves the electrochemical performance. However, Sr(3)(Co, Fe)(2)O(7-δ) has a significant negative influence on the electrochemical activity for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The peak power densities with a single-layer Sr(1.00)Co(0.8)Fe(0.2)O(3-δ) cathode are 275, 475, 749 and 962 mW cm(-2) at 550, 600, 650 and 700 °C, respectively, values which are slightly lower than those for Sr(0.95)Co(0.8)Fe(0.2)O(3-δ) (e.g. 1025 mW cm(-2) at 700 °C) but much higher than those for Sr(1.05)Co(0.8)Fe(0.2)O(3-δ) (e.g. only 371 mW cm(-2) at 700 °C). This remarkable dependence of electrochemical performance of the Sr(x)Co(0.8)Fe(0.2)O(3-δ) cathode on the A-site nonstoichiometry reveals that lower values of electrochemical activity reported in the literature may be induced by an A-site cation excess. Therefore, to obtain a high performance of Sr(x)Co(0.8)Fe(0.2)O(3-δ) cathode for IT-SOFCs, an A-site cation excess must be avoided.  相似文献   

7.
In pH 5.5 phosphate buffer solution,N-n-undecyl-N'-(sodium-p-amino-benzenesulfonate)thiourea(UPT)produced a pair of redox peaks on the bare glassy carbon electrode.At the multi-walled carbon nanotube(MWNT)modified electrode,the electrochemical behavior of UPT enhanced greatly.In the presence of bovine serum albumin (BSA),the peak currents of UPT decreased linearly due to the formation of a super-molecular complex.This method was successfully applied to the determination of BSA in a bovine serum sample.  相似文献   

8.
The macrocyclic ligand,15-crown-5,was used as an ionophore for fabrication of a polyvinyl chloride(PVC) based membrane sensor for Ag(Ⅰ) cation.For construction of the Ag(Ⅰ) cation selective electrode the best response characteristics were obtained using the composition: 15-crown-5/PVC/o-nitrophenyloctylether(NPOE)/sodium tetraphenyl borate(NaTPB) in the percentage ratio of 5.6/30/60.5/3.9(w/w/w/w).The electrochemical sensor shows a linear dynamic range 1.0 10 7–1.0 10 1mol/L and a Nernstian slope of 58.9 0.5 mV/decade with a detection limit of 8.09 10 8mol/L for Ag(Ⅰ) cation.It has a fast response time of 10 s and can be used for at least 8 weeks without any considerable divergences in its potential response.It was successfully used as an indicator electrode in potentiometric titration of Ag(Ⅰ)cation with I and Cl anions and also for the determination of this metal cation in radiology waste water.  相似文献   

9.
New N-substituted cyclam ligands 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-1,4,8,11-tetraazacyclotetradecane, and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane (L1–L4) were synthesized and mononuclear copper(II) and nickel(II) complexes prepared. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-alkylation causes red shifts in the λmax values of the complexes. Copper(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.04 to ?1.00 V. The nickel(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.18 to ?1.30 V and one-electron, quasi-reversible oxidation waves in the range +1.20 to +1.40 V. The reduction potential of the copper(II) and nickel(II) complexes of the ligands L1 to L2 and L3 to L4 shift anodically on N-alkylation. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff?=?1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and on the hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalyst were carried out. The tetra-N-substituted complexes have higher rate constants than the corresponding disubstituted complexes.  相似文献   

10.
The relevance of H2O2 as biomarker for different neurodegenerative diseases and cancer has been one of the most significant incentives for the development of new (bio)sensors that allow a more sensitive, selective, fast, and stable quantification of H2O2. In this regard, the association of carbon nanotubes with hemoproteins, nanoparticles, and other nanostructures and different electrochemical transducers has offered new avenues for the construction of innovative H2O2 bioanalytical platforms. This short review highlights the most relevant contributions in the field of electrochemical (bio)sensors for H2O2 based on carbon nanotubes published in the period 2016–2018.  相似文献   

11.
A series of ferrocene-containing rhodium complexes of the type [Rh(FcCOCHCOR)(cod)] (cod = 1,5-cyclooctadiene) with R = CF(3), 1, (E(pa)(Rh) = 269; E(o)'(Fc) = 329 mV vs. Fc/Fc(+)), CCl(3), 2, (E(pa) = 256; E(o)' = 312 mV), CH(3), 3, (E(pa) = 177; E(o)' = 232 mV), Ph = C(6)H(5), 4, (E(pa) = 184; E(o)' = 237 mV), and Fc = ferrocenyl = (C(5)H(5))Fe(C(5)H(4)), 5, (E(pa) = 135; E(o)'(Fc1) = 203; E(o)'(Fc2) = 312 mV), have been studied electrochemically in CH(3)CN. Results indicated that the rhodium(I) centre is irreversibly oxidised to Rh(III) in a two-electron transfer process before the ferrocenyl fragment is reversibly oxidized in a one-electron transfer process. The peak anodic (oxidation) potential, E(pa), (in V vs. Fc/Fc(+)) of the rhodium core in 1-5 relates to k(2), the second-order rate constant for the substitution of (FcCOCHCOR)(-) with 1,10-phenanthroline in [Rh(FcCOCHCOR)(cod)] to form [Rh(phen)(cod)](+) in methanol at 25 °C with the equation lnk(2) = 39.5 E(pa)(Rh) - 3.69, while the formal oxidation potential of the ferrocenyl groups in 1-5 relates to k(2) by lnk(2) = 40.8 E(o)'(Fc)-6.34. Complex 4 (IC(50) = 28.2 μmol dm(-3)) was twice as cytotoxic as the free FcCOCH(2)COPh ligand having IC(50) = 54.2 μmol dm(-3), but approximately one order of magnitude less toxic to human HeLa neoplastic cells than cisplatin (IC(50) = 2.3 μmol dm(-3)).  相似文献   

12.
The electrochemical behavior of a new cobalt–cyclodextrin (CD) complex was investigated, in dimethylformamide, from CoX2 (X = Br and BF4) in the presence of 1 equiv. 6-Deoxy-6-N-(2-methyliminopyridine)-β-cyclodextrin as ligand. Under these conditions, it was demonstrated for the first time, that the electrogenerated cobalt(I) species can be kinetically and thermodynamically stabilized. The electrochemical study of CoX2 in the presence of a related iminopyridine ligand (2-pyridyl-N-benzylmethylimine), in which the cyclodextrin (CD) group was replaced by a simple aryl moiety, allowed to highlight the crucial role of the CD in this unexpected stabilization. Importantly, this unprecedented result was only observed when both the iminepyridine and the CD moieties were together covalently attached. Importantly, the supramolecular stabilized low-valent cobalt species remained fairly reactive towards aromatic halides despite its intrinsic stability. This original work opens new opportunities for the development of more selective catalytic processes both in organic and aqueous media.  相似文献   

13.
We describe an immunochromatographic electrochemical biosensor (IEB) for highly specific and sensitive determination of Hg(II) ions. The IEB is based on the use of a new monoclonal antibody (McAb) against Hg(II) ions that affects the recognition of an antigen. The McAb is placed on the surface of gold nanoparticles (AuNPs) and can recognize the antigen only in the absence of Hg(II) ions. This detection scheme was used to design an immunochromatographic test strip using dually labeled AuNPs along with electrochemical detection. Signal amplification was accomplished by a competitive reaction and the use of horseradish peroxidase. Following immunochromatography, the test zone was cut out and transferred into a reaction cell loaded with a substrate solution containing ortho-phenylenediamine and H2O2. After 10-min incubation with horseradish peroxidase, square wave voltammetry was performed with a screen-printed electrode. Under optimal conditions and a working voltage of ?0.57 V, the IEB displays a linear response in the 0.1 to 200 ng.mL?1 Hg(II) concentration range and a 30 pg.mL?1 limit of detection. It was applied to the determination of Hg(II) in (spiked) waters and milk where its sensitivity by far surpassed the maximum allowed contamination levels. This sensitive IEB therefore possesses substantial advantages over other assays. In addition, the detection scheme may be extended to other metal ions for which appropriate antibodies are available.
Graphical abstract We developed an immunochromatographic electrochemical biosensor (IEB) for highly specific and sensitive determination of Hg(II) ions in water and milk by using a new anti-Hg2+ monoclonal antibody (McAb). The linear range and limit of detection is 0.1–200 ng·mL?1 and 30 pg.mL?1, respectively.
  相似文献   

14.
The phenol, α-tocopherol, can be electrochemically oxidised in a -2e(-)/-H(+) process to form a diamagnetic cation that is long-lived in dry organic solvents such as acetonitrile and dichloromethane, but in the presence of water quickly reacts to form a hemiketal. Variable scan rate cyclic voltammetry experiments in acetonitrile with carefully controlled amounts of water between 0.010 M-0.6 M were performed in order to determine the rate of reaction of the diamagnetic cation with water. The water content of the solvent was accurately determined by Karl Fischer coulometric titrations and the voltammetric data were modelled using digital simulation techniques. The oxidation peak potential of α-tocopherol measured during cyclic voltammetry experiments was found to shift to less positive potentials as increasing amounts of water (0.01-0.6 M) were added to the acetonitrile, which was interpreted based on hydrogen-bonding interactions between the phenolic hydrogen atom and water. Several other phenols were examined and they displayed similar voltammetric features to α-tocopherol, suggesting that interactions of phenols with trace amounts of water were a common occurrence in acetonitrile. The H-bonding interactions of α-tocopherol with water were also examined via NMR and UV-vis spectroscopies, with the voltammetric and spectroscopic studies extended to include other coordinating solvents (dimethyl sulfoxide and pyridine).  相似文献   

15.
This work reports the preparation, characterization, and electrocatalytic characteristics of a new metallic nanocatalyst. The catalyst, Pt black–graphene oxide (Pt-GO), was prepared by deposition of Pt black on the surface of graphene oxide nanosheet and characterized by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. The Pt-graphene (Pt-GR) composite modified glassy carbon electrode (Pt-GR/GCE) was prepared with cyclic voltammetric scanning of Pt-GO/GCE in the potential range from ?1.5 to 0.2 in 0.1 M phosphate buffer solution at 50 mV·s?1 for 5 cycles. The electrocatalytic properties of the Pt-GR/GCE for methanol (CH3OH) oxidation have been investigated by cyclic voltammetry (CV); high electrocatalytic activity of the Pt-GR/GCE can be observed. This may be attributed to the high dispersion of Pt catalyst and the particular properties of GR support. The long-term stability of Pt-GR composite was investigated in 0.05 M CH3OH in 0.1 M H2SO4 solution. It can be observed that the peak current decreases gradually with the successive scans. The loss may result from the consumption of methanol during the CV scan. It also may be due to the poisoning organic compounds. The results imply that the Pt-GR composite has good potential applications in fuel cells.  相似文献   

16.
Several aspects of the application of silver electrode to the electrochemical studies of hemoglobin have been discussed in this paper . The silver electrode could not only be used directly as the electrode for the electrochemical studies of hemoglobin, but also react with phenothiazine and benzimidazole to give stable and useful mediator-coated electrodes. In addition, the silver electrode could help sodium dodecyl sulfate to give full play to its promoting effect on the protein.  相似文献   

17.
Langmuir–Schaefer (LS) films of poly(ortho-anisidine) (POAS) were fabricated by utilizing water and water acidified HCl as subphases, respectively. The uniformity of the films formation and the doping with Nafion were verified by UV–Vis spectroscopy. The morphology and the thickness of the POAS, HCl post-doping POAS and Nafion post-doping POAS LS films were investigated using atomic force microscopy. The electrochemical properties of POAS LS films, HCl post-doping POAS and Nafion post-doping POAS were investigated and compared with our previously published work. The electrochemical switching time of HCl post-doping POAS and Nafion post-doping POAS LS films were also estimated.  相似文献   

18.
This work has initiated an investigation on the electrochemical behaviors and the structure changes of the composite electrode 0.3Li(2)MnO(3)·0.7LiMn(1/3)Ni(1/3)Co(1/3)O(2) when charged with different cut-off voltages. It is found that the charge cut-off voltages could not only affect the capacity property and coulombic efficiency, but also alter the electrode kinetics of the composite. As a consequence, the electrochemical activation of the composite electrode is highly dependent on the charge cut-off voltages: when the charge cut-off voltage is higher than 4.5 V, the inert component Li(2)MnO(3) in the composite electrode is completely activated. At the meanwhile, there occurred an irreversible oxygen loss during the initial charge process, which yielded a hollow sphere in the electrode. Regardless of charge voltages, Mn ions in the composite electrode were presented in an oxidation state of +4, while Co(2+) ions were detected at the surface of the electrode when cycled at low voltages. Ni ions in the composite could react with organic or inorganic species and then cover the surface of the cycled electrode.  相似文献   

19.
We have prepared and characterised a new series of metal complexes obtained from 4,4-bis(salicylideneimino)diphenylethane (saldipH2) and cobalt(II), copper(II) and cadmium(II) chlorides. In every case, the coordinating atoms are N and O. However, each compound has its own structure:[Co(saldip)]·2 H2O is monomeric and a mononuclear species, [Cu2(saldip)2(H2O)] is a binuclear complex and finally the cadmium complex is formulated as:[(CdCl2)2(saldipH2)]·CdCl2. An electrochemical study (cyclic voltammetry) indicates that the reduction, as well as the oxidation, of copper in [Cu2(saldip)2(H2O)] proceeds in two steps. For the reduction of the two other complexes, two steps are indicated out: the first is attributed to the reduction of the metal and the second to the reduction of the coordinated ligands.  相似文献   

20.
Abstract

The widespread and large scale use of platinum group metals, especially palladium, in a wide variety of industrial applications has seen their levels in wastewater streams, roadside dust and even pharmaceuticals significantly rise over recent years. Due to the possible environmental damage and potential health risk this may cause, there is now substantial demand for inexpensive, efficient and robust methods for the detection of palladium. Based upon self-immolative linker technologies, we have designed and synthesised a number of allyl ether-functionalised electrochemical probes to determine the optimum probe structure required to deliver a ratiometric electrochemical detection method capable of achieving a limit of detection of <1 mg/mL within 20 min through the use of disposable screen-printed carbon electrodes. Combined with an enzymatic assay, this method was then used to achieve a proof-of-principle ratiometric electrochemical molecular logic gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号