首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanostructured amorphous RuO2 · xH2O/C composite materials are prepared via a modified sol–gel process using glycolic acid. The glycolate anion, which dissociates from glycolic acid at pH 7, behaves as a stabilizer by adsorbing onto the RuO2 · xH2O surface, thus resulting in particles with a size of about 2 nm. As evidenced by zeta potential measurements, the surface charge of RuO2 · xH2O becomes more electronegative as the amount of glycolic acid increases. After heat treatment at 160 oC to remove the stabilizer, RuO2 · xH2O/C is found to exhibit an amorphous structure. The specific capacitance of RuO2 · xH2O/C particles (40 wt% Ru) prepared in the presence of glycolic acid (0.3 g L−1) is 462 F g−1, which is 30% higher than that of the material prepared in the absence of glycolic acid. Both the nanosized particles and the amorphous structure mainly contribute to this increase in the specific capacitance.  相似文献   

2.
Sodium insertion into the vanadate NaVO3 shows the formation of an amorphous phase with the composition Na1.5 + yVO3. The latter phase exhibits reversible electrochemical sodium intercalation/de-intercalation properties through a solid solution-like process, for 0 < y < 0.7, with redox cycling at 1.8 V vs. Na+/Na and a capacity of 150 mAh/g. This result opens the route to the investigation of amorphous matrices involving transition metal oxides for sodium ion battery applications.  相似文献   

3.
A VO2 · 0.43H2O powder with a flaky particle morphology was synthesized via a hydrothermal reduction method. It was characterized by scanning electron microscopy, electron energy loss spectroscopy, and thermogravimetric analysis. As an electrode material for rechargeable lithium batteries, it was used both as a cathode versus lithium anode and as an anode versus LiCoO2, LiFePO4 or LiNi0.5Mn1.5O4 cathode. The VO2 · 0.43H2O electrode exhibits an extraordinary superiority with high capacity (160 mAh g?1), high energy efficiency (95%), excellent cyclability (142.5 mAh g?1 after 500 cycles) and rate capability (100 mAh g?1 at 10 C-rate).  相似文献   

4.
The stacks of multi-layer Ti3C2Tx and other types of MXene materials limit their electrochemical performance. Herein, we report a facile exfoliation technique to improve the exfoliation efficiency through Li-intercalation into Ti3C2Tx interlayers in isopropyl alcohol (IPA) with LiOH as intercalant. This de-intercalation method presented here not only effectively delaminates the stacked Ti3C2Tx multi-layers into separate few-layer MXene sheets, but also achieves high-rate supercapacitive performance of Ti3C2Tx electrode. The as-produced delaminated Ti3C2Tx shows highly improved electrochemical capacitive properties from 47 to 115 F g 1 at 200 mV s 1. Even at extremely high scan rate of 1000 mV s 1, a specific capacitance of 82 F g 1 is still obtained. The high-rate capability can be attributed to improved ions accessibility into the few-layer structures. This study offers a new and simple exfoliation pathway for MXenes materials to exploit their full potential in energy storage applications.  相似文献   

5.
New Schiff base (H2L) ligand is prepared via condensation of o-phthaldehyde and 2-aminobenzoic acid in 1:2 ratio. Metal complexes are prepared and characterized using elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, 1H NMR, ESR and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [MCl(L)(H2O)]·2H2O (where M = Cr(III) and Fe(III)); [M(L)]·yH2O (where M = Mn(II), Ni(II), Cu(II) and Zn(II), y = 1–2) and [M(L)(H2O)nyH2O (where M = Co(II) (n = y = 2), Co(II) (n = y = 1), Ni(II) (n = 2, y = 1). The molar conductance data reveal that all the metal chelates were non-electrolytes. IR spectra show that H2L is coordinated to the metal ions in a bi-negative tetradentate manner with NOON donor sites of the azomethine-N and carboxylate-O. The 1H NMR spectral data indicate that the two carboxylate protons are also displaced during complexation. From the magnetic and solid reflectance spectra, it was found that the geometrical structure of these complexes are octahedral (Cr(III), Fe(III), Co(II) and Ni(II)), square planar (Cu(II)), trigonal bipyramidal (Co(II)) and tetrahedral (Mn(II), Ni(II) and Zn(II)). The thermal behaviour of these chelates showed that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the ligand molecule in the subsequent steps. The biological activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.  相似文献   

6.
A series of four isostructural dodecanuclear complexes [MnIII9MnII2LnIII(O)8(OH)(piv)16(NO3)(CH3CN)]·xCH3CN·yC7H16 (piv = pivalate; x = ½, y = ¾, Ln = Tb (1); x = 2, y = ½, Ln = Dy (2), Ho (3), and Y (4)) has been prepared for which the structural motif described as ‘a lanthanide ion nested in a large manganese shell’ is observed. All compounds show out-of-phase signals in their ac susceptibilities, and their single-molecule magnet behaviour was confirmed by single-crystal micro-SQUID studies of 1-3 which show hysteresis loops of molecular origin at T < 1.0 K. The SMM behaviour observed in compounds 1-3 is more pronounced than that for 4, which contains the diamagnetic YIII ion. This is principally the result of ferromagnetic coupling between the paramagnetic anisotropic LnIII ions (TbIII, DyIII and HoIII) and the manganese shell, which enhances the total spin ground state of the complexes.  相似文献   

7.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

8.
The mobility of uranium under oxidizing conditions can only be modeled if the thermodynamic stabilities of the secondary uranyl minerals are known. Toward this end, we synthesized metaschoepite (UO3(H2O)2), becquerelite (Ca(UO2)6O4(OH)6(H2O)8), compreignacite (K2(UO2)6O4(OH)6(H2O)7), sodium compreignacite (Na2(UO2)6O4(OH)6(H2O)7), and clarkeite (Na(UO2)O(OH)) and performed solubility measurements from both undersaturation and supersaturation under controlled-pH conditions. The solubility measurements rigorously constrain the values of the solubility products for these synthetic phases, and consequently the standard-state Gibbs free energies of formation of the phases. The calculated lg solubility product values (lg Ksp), with associated 1σ uncertainties, for metaschoepite, becquerelite, compreignacite, sodium compreignacite, and clarkeite are (5.6 ?0.2/+0.1), (40.5 ?1.4/+0.2), (35.8 ?0.5/+0.3), (39.4 ?1.1/+0.7), and (9.4 ?0.9/+0.6), respectively. The standard-state Gibbs free energies of formation, with their 2σ uncertainties, for these same phases are (?1632.2 ± 7.4) kJ · mol?1, (?10305.6 ± 26.5) kJ · mol?1, (?10107.3 ± 21.8) kJ · mol?1, (?10045.6 ±24.5) kJ · mol?1, and (?1635.1 ± 23.4) kJ · mol?1, respectively. Combining our data with previously measured standard-state enthalpies of formation for metaschoepite, becquerelite, sodium compreignacite, and clarkeite yields calculated standard-state entropies of formation, with associated 2σ uncertainties, of (?532.5 ± 8.1) J · mol?1 · K?1, (?3634.5 ± 29.7) J · mol?1 · K?1, ( ?2987.6 ± 28.5) J · mol?1 · K?1, and (?300.5 ± 23.9) J · mol?1 · K?1, respectively. The measurements and associated calculated thermodynamic properties from this study not only describe the stability and solubility at T = 298 K, but also can be used in predictions of uranium mobility through extrapolation of these properties to temperatures and pressures of geologic and environmental interest.  相似文献   

9.
Syntheses of three benzaldazine compounds 13 with the general formula Ar1(CH = N–N = HC)Ar2 (Ar1 = Ar2 = 2-OH-3,5-tBu2C6H2 (1), Ar1 = Ar2 = 2-BrC6H4 (2), Ar1 = ortho-C6H4(NHC6H3-Me2-2,6), Ar2 = C6H4F-2 (3)) are described. All compounds were characterized by elemental analysis, 1H NMR, 13C NMR, IR spectroscopy and single-crystal X-ray crystallography. The different supramolecular structures were obtained through different weak interactions (C ? H···O, O ? H···N and π···π interactions for 1; C ? H···Br and Br···Br interactions for 2; C ? H···F and C ? H···N interactions for 3). Compound 1 shows solvent-dependent fluorescent properties with blue to green emission on the increasing of the solvent polarity. Compounds 2, 3 show blue photoluminescence in different solvents.  相似文献   

10.
This paper reports two low-profile (~ 10 μm thick) solid state reference electrodes for use in solid polymer electrolytes. The thin, open geometry of the electrodes enables close positioning between the working and counter electrodes. The first electrode uses the palladium hydride (Pd|PdHx) couple (PHRE), and the second utilises the hydrous iridium oxide (IrOx·yH2O|IrOa·bH2O) couple (IORE). To our knowledge this is the first use of the latter as a reference electrode. The PHRE had a stable potential of + 70 mV vs RHE with a 4 mV h 1 drift and two hour lifetime, whilst the IORE gave a potential of + 847 mV vs RHE with a drift of 0.3 mV h 1 and no deterioration after 24 h of use. The use of these reference electrodes in a three-electrode solid state cell and a fuel cell is demonstrated.  相似文献   

11.
The solubility measurements of sodium dicarboxylate salts; sodium oxalate, malonate, succinate, glutarate, and adipate in water at temperatures from (278.15 to 358.15 K) were determined. The molar enthalpies of solution at T = 298.15 K were derived: ΔsolHm (m = 2.11 mol · kg?1) = 13.86 kJ · mol?1 for sodium oxalate; ΔsolHm (m = 3.99 mol · kg?1) = 14.83 kJ · mol?1 for sodium malonate; ΔsolHm (m = 2.45 mol · kg?1) = 14.83 kJ · mol?1 for sodium succinate; ΔsolHm (m = 4.53 mol · kg?1) = 16.55 kJ · mol?1 for sodium glutarate, and ΔsolHm (m = 3.52 mol · kg?1) = 15.70 kJ · mol?1 for sodium adipate. The solubility value exhibits a prominent odd–even effect with respect to terms with odd number of sodium dicarboxylate carbon numbers showing much higher solubility. This odd–even effect may have implications for the relative abundance of these compounds in industrial applications and also in the atmospheric aerosols.  相似文献   

12.
Glasses with compositions xNb2O5·(30 ? x)M2O·69B2O3 (where M = Li, Na, K; x = 0, 4, 8 mol%) doped with 1 mol% V2O5 have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400–4000 cm?1. The changes caused by the addition of Nb2O5 on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO2+ ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V4+ ions which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V4+O6 complex decreases with increasing concentration of Nb2O5. The 3dxy orbit contracts with increase in Nb2O5:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported.  相似文献   

13.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

14.
The pure hydrated metalloborophosphate sample, Na2[CuB3P2O11(OH)]·0.67H2O, has been synthesized and characterized by XRD, FT-IR, DTA-TG techniques, and chemical analysis. The molar enthalpies of solution of Na2[CuB3P2O11(OH)]·0.67H2O(s) in 1 mol · dm?3 HCl (aq), of Cu(OH)2 (s) in (HCl + H3BO3) (aq), and of NaH2PO4·2H2O (s) in (HCl + H3BO3 + Cu(OH)2) (aq) were measured, respectively. With the incorporation of the previously determined enthalpy of solution of H3BO3 (s) in 1 mol · dm?3 HCl (aq), together with the use of the standard molar enthalpies of formation for NaH2PO4·2H2O (s), Cu(OH)2 (s), H3BO3 (s), and H2O (l), the standard molar enthalpy of formation of ?(4988.4 ± 2.5) kJ · mol?1 for Na2[CuB3P2O11(OH)]·0.67H2O at T = 298.15 K was obtained on the basis of the appropriate thermochemical cycle.  相似文献   

15.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

16.
The enthalpy of formation of zinc acetate dihydrate (Zn(CH3COO)2 · 2H2O) was measured with respect to crystalline zinc oxide (ZnO), glacial acetic acid (CH3COOH) and liquid water by room temperature solution calorimetry. The enthalpy of formation was verified by utilizing two independent thermodynamic cycles, using enthalpy of solution measurements in 5 mol · L?1 sodium hydroxide (NaOH) and in 5 mol · L?1 hydrochloric acid (HCl) solutions. The enthalpy of the reaction ZnO (cr) + 2CH3COOH (l) + H2O (l) to form Zn(CH3COO)2 · 2H2O (cr) is –(65.78 ± 0.36) kJ · mol?1 for measurements in 5 mol · L?1 NaOH and –(66.25 ± 0.17) kJ · mol?1 for measurements in 5 mol · L?1 HCl. The standard enthalpy of formation of Zn(CH3COO)2 · 2H2O from the elements is –(1669.35 ± 1.30) kJ · mol?1. This work provides the first calorimetric measurement of the enthalpy of formation of Zn(CH3COO)2 · 2H2O.  相似文献   

17.
In this paper, luminescence properties of orthovanadates, Y1−xyGdxVO4:ySm3+ (where x = 0.05–0.50, y = 0.01–0.05), and the energy transfer mechanism from VO43− to Sm3+ via Gd3+ ions were investigated in detail. X-ray diffraction (XRD) analysis confirmed the crystalline phase for synthesized nanophosphor in a tetragonal structure with I41/amd space group. The average crystallite size estimated from XRD was ∼28 nm. Field-emission scanning electron microscopy coupled with energy dispersive X-ray analysis revealed oval shaped morphology and composition of the nanophosphor, respectively. From high-resolution transmission electron microscopy observations, the particle sizes were found to be in the range 10–80 nm. The photoluminescence studies of Y0.77Gd0.20VO4:0.03Sm3+ nanophosphor under 311 nm excitation exhibits dominant emission peak at 598 nm corresponding to 4G5/2  6H7/2 transition. The energy transfer occurs from VO43− to Sm3+ via Gd3+ ions was confirmed by applying Dexter and Reisfeld’s theory and Inokuti-Hirayama model. Moreover, the energy transfer efficiencies and probabilities were calculated from the decay curves. Furthermore, Commission Internationale de l’Eclairage (CIE) color coordinate (0.59, 0.37) has been observed to be in the orange-red (598 nm) region for Y0.77Gd0.20VO4:0.03Sm3+ nanophosphor. These results perfectly established the suitability of these nanophosphors in improving the efficiency of silicon solar cells, light emitting diodes, semiconductor photophysics, and nanodevices.  相似文献   

18.
Measurements of the critical parameters for {xNH3 + (1 ? x)H2O} with x = (0.9098, 0.7757, 0.6808) were carried out by using a metal-bellows variable volumometer with an optical cell. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than 3.2 mK, 3.2 kPa, 0.3 kg · m?3, and 8.8 · 10?4, respectively. In each mole fraction, the critical temperature Tc was first determined on the basis of the intensity of the critical opalescence. The critical pressure pc and critical density ρc were then determined as the point at which the meniscus disappears on the isotherm at T = Tc. The expanded uncertainties (k = 2) in the present critical parameters have also been estimated. Comparisons of the present values with the literature data as well as the calculated values afforded using the equation of state are also presented.  相似文献   

19.
The important zinc borate of 2ZnO · 3B2O3 · 3H2O has been synthesized and characterized by means of chemical analysis, XRD, FT-IR, and DTA–TG techniques. The molar enthalpies of solution of H3BO3(s) in HCl · 54.561H2O, of ZnO(s) in the mixture of HCl · 54.561H2O and calculated amount of H3BO3, and of 2ZnO · 3B2O3 · 3H2O(s) in HCl · 54.604H2O were measured, respectively. With the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of ?(5561.7 ± 4.9) kJ · mol?1 for 2ZnO · 3B2O3 · 3H2O(s) was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

20.
2D titanium carbide (Ti3C2Tx MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti3C2Tx electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from − 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI+ cations and/or TFSI anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti3C2Tx flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effect between intercalated TFSI anions and positively charged Ti3C2Tx nanosheets or steric effect caused by de-intercalation of EMI+ cations. The expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号