首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
《Analytical letters》2012,45(18):2876-2886
Micron-size ion selective micropipettes can be used in scanning electrochemical microscopy (SECM). They can provide excellent spatial resolution. Unfortunately the resistance of these small sensors is high. Their application needs special shielding and slow scanning rates. Usually their lifetime hardly exceeds a few days.

Zinc layer or dispersed zinc particles containing films are often used for providing cathodic protection against corrosion in case of metal surfaces. Therefore, in corrosion studies, measurements of local zinc ion concentration can give important information about the nature of the process. For corrosion studies we needed SECM measuring tips for imaging concentration profiles of Zn2+ions involved in surface processes. Based on our earlier experience, solid contact micropipettes for selective measurements of Zn2+ion concentration were prepared with a tip size of a few micrometers. The properties of the micropipettes were investigated. They were also used in SECM imaging. In this paper, details of Zn2+ion selective microelectrode preparation are described. Data about their properties, lifetime, resistance, and ion activity response are shown. Preliminary findings in SECM imaging of zinc ion concentration profiles are shown. The improvement of the scanning rate achieved by lowering tip resistance is a main advantage in potentiometric SECM.  相似文献   

2.
The corrosion morphology and composition of corrosion products of A3003 formed in model fresh water with different Zn2+ concentrations were investigated by immersion tests combined with surface observations and analysis using an Auger electron spectroscope (AES). The cross-sectional AES observations showed that the thickness of the corrosion product layer formed on A3003 decreases with increases in the Zn2+ concentration of the model fresh water. A cross-sectional AES point analysis suggested that the corrosion products formed on the A3003 in the Zn2+ containing model fresh water (Zn2+ > 0.1 mM) have a multilayered structure and that the inner of Zn-rich layer would have high corrosion protective properties.  相似文献   

3.
Methods were developed for preparing Ta2O5:Zn alloys containing less than 3 wt % Zn2+ for the purpose of using them further in preparing lithium tantalate batches and growing from them single crystals having improved properties. A method where zinc is doped directly into a tantalum-containing back-extract followed by precipitation of tantalum and zinc hydroxides with ammonia is confined to a Zn2+ concentration of 1.7 wt % in Ta2O5; at higher concentrations, Zn2+ forms soluble ammine complexes. A method where Zn2+ is extracted by high-purity tantalum hydroxide is applicable within the range of Zn2+ concentrations studied. Optimal conditions were found for preparing Ta2O5:Zn2+ alloys of various compositions. X-ray powder diffraction and IR spectroscopy were used to study the phase composition of the alloys synthesized, and Zn2+ concentrations were determined at which a ZnTa2O6 phase was formed along with the major Ta2O5 phase.  相似文献   

4.
The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1–3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The irreversible issues of Zn anode stemming from dendrite growth and water-induced erosion have severely hindered the commercialization of rechargeable aqueous Zn batteries. Herein, a hydrophobic and fast-Zn2+-conductive zinc hexacyanoferrate (HB-ZnHCF) interphase layer is in situ integrated on Zn by a rapid room-temperature wet-chemistry method to address these dilemmas. Different from currently proposed hydrophilic inorganic cases, the hydrophobic and compact HB-ZnHCF interphase effectively prevents the access of water molecules to Zn surface, thus avoiding H2 evolution and Zn corrosion. Moreover, the HB-ZnHCF with large internal ion channels, strong zincophilicity, and high Zn2+ transference number (0.86) permits fast Zn2+ transport and enables smooth Zn deposition. Remarkably, the resultant HB-ZnHCF@Zn electrode delivers unprecedented reversibility with 99.88 % Coulombic efficiency over 3000 cycles, realizes long-term cycling over 5800 h (>8 months, 1 mA cm−2) and 1000 h (10 mA cm−2), and assures the stable operation of full Zn battery with both coin- and pouch-type configurations.  相似文献   

6.
An efficient quinoline-based fluorescent chemosensor (QLNPY) was successfully developed for the detection of zinc ions (Zn2+). This novel chemosensor displayed higher sensitivity and selectivity toward Zn2+ over other competitive metal ions accompanying with obvious fluorescence enhancement. The QLNPY-Zn2+ complex can be further used as a new fluorescent “turn-off” sensor for pyrophosphate (PPi) and sulfur ion (S2?) via a Zn2+ displacement approach. The limits of detection were calculated to be 3.8 × 10?8 M for Zn2+, 3.7 × 10?7 M for PPi and 4.9 × 10?7 M for S2?. The binding mechanism of QLNPY and Zn2+ was investigated through NMR, HR-MS analysis and further studied by crystallographic analysis. Additionally, further application of QLNPY for sequential bioimaging of Zn2+ and PPi was studied in HepG2 cells, suggesting that the quinoline-based chemosensor possesses great potential applications for the detection of intracellular Zn2+ and PPi in vivo.  相似文献   

7.
《Tetrahedron》2004,60(30):6327-6334
The Zn2+ and Cd2+ complexing properties of four ligands containing a 4,4′-substituted biphenyl moiety are described. Ligands 1 and 3, containing only one 1-aza-18-crown-6 cavity, lead to selective complexation of Cd2+ versus Zn2+. Ligand 4, with two crown cavities linked to a tetramethylbenzidine unit, is able to form 1:1 complexes with Zn2+ and Cd2+, showing a higher complexing constant with Zn2+ than with Cd2+, probably due to enthalpic factors. Several complementary experiments suggest that the 1:1 complexes formed by ligand 4 involve both crown cavities acting together to give rise to clamp structures. The formation of this type of zinc complex gives rise to red shifted emission bands and distinct quenching of the fluorescence. A similar situation is observed with cadmium but the change is then less pronounced. When mixtures of both salts are used, ligand 4 selectively responds to zinc. Finally, ligand 2, which also has two crown cavities but contains nitro rather than amino groups in the biphenyl moiety, shows no propensity to form clamp complexes and, for this reason, it complexes cadmium much more strongly than zinc and binds the former selectively when mixtures of both salts are used in complexing experiments.  相似文献   

8.
The interaction of zinc(II) complex of N,N′‐bis(guanidinoethyl)‐2,6‐pyridinedicarboxamide (Gua) with DNA was studied by CD spectroscopy and agarose gel electrophoresis analysis. The results indicate that the DNA binding affinity of Zn2+‐Gua is stronger than that of Gua and the Zn2+‐Gua can promote the cleavage of phosphodiester bond of supercoiled DNA under a physiological condition, which is ~106 times higher than DNA natural degradation. The hydrolysis pathway was proposed as the possible mechanism for DNA cleavage promoted by the Zn2+‐ Gua. The acceleration is due to cooperative catalysis of the zinc cation center and the functional groups (bisguanidinium groups).  相似文献   

9.
Zn2+ can interact with adenosine 5′-triphosphate (ATP) by electrostatic and coordination interactions, and the interaction sites between Zn2+ and ATP vary at different pH in the ATP–Zn2+ binary system. Non-covalent interactions exist between the carboxyl of arginine (Arg) and Zn2+, which led to competition between ATP and Arg to interact with Zn2+ in the ATP–Zn2+–Arg ternary system. Kinetics studies show that the hydrolysis rate constant of ATP in the ATP–Zn2+ binary system was 2.44?×?10?2?min?1, about 11-fold faster than that (2.27?×?10?3?min?1) in the ATP–Zn2+–Arg ternary system. This may be attributed to coordination interactions between the carboxyl of Arg and Zn2+ and the decreased activity of zinc ion toward the phosphate groups via nucleophilic attack. A mechanism that the hydrolysis occurred through an addition–elimination mechanism is proposed.  相似文献   

10.
Na Li 《Talanta》2009,79(2):327-153
Salicylaldehyde hydrazones of 1 and 2 were synthesized and their potential as fluorescent probes for zinc ion was investigated in this paper. Both of the probes were found to show fluorescence change upon binding with Zn2+ in aqueous solutions, with good selectivity to Zn2+ over other metal ions such as alkali/alkali earth metal ions and heavy metal ions of Pb2+, Cd2+ and Hg2+. They showed 1:2 metal-to-ligand ratio when their Zn2+ complex was formed. By introducing pyrene as fluorophore, 2 showed interesting ratiometric response to Zn2+. Under optimal condition, 2 exhibited a linear range of 0-5.0 μM and detection limit of 0.08 μM Zn2+ in aqueous buffer, respectively. The detection of Zn2+ in drinking water samples using 2 as fluorescent probe was successful.  相似文献   

11.
A ratiometric fluorescent zinc probe 1 of carboxamidoquinoline with a carboxylic acid group was designed and synthesised. Probe 1 exhibits high selectivity for sensing Zn2+; about a 13-fold increase in fluorescence emission intensity and an 82?nm red-shift of fluorescence emission are observed upon binding Zn2+ in EtOH/H2O (1?:?1, V/V) solution. The ratiometric fluorescence response is attributed to the 1?:?1 complex formation between probe 1 and Zn2+ which has been utilised as the basis for the selective detection of Zn2+. The analytical performance characteristics of the proposed Zn2+-sensitive probe were investigated. The linear response range covers a concentration range of Zn2+ from 2.0?×?10?6 to 5.0?×?10?5?mol?L?1 and the detection limit is 2.7?×?10?7?mol?L?1. The determination of Zn2+ in both tap and river water samples shows satisfactory results.  相似文献   

12.
Herein, we report the synthesis of two lanthanide-based chemosensors, Tb-5 and Eu-6, designed to sense free zinc ions (Zn2+) in aqueous solutions. The Tb-5 complex features a bis(2-pyridinylmethyl)amine moiety as a zinc(II)-responsive lanthanide-sensitising ‘antenna’, while Eu-6 incorporates a quinoline-based moiety for this purpose. Luminescence enhancements of 210% and 340% are observed upon addition of Zn2+ ions to Tb-5 and Eu-6, respectively. Both sensors are selective for Zn2+ ions over several other cations of environmental significance.  相似文献   

13.
The aim of the present work was to study the corrosion inhibition of carbon steel using a ternary formulation. This new ternary inhibitor formulation, viz., 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), with zinc ions and silicate ions was used to protect carbon steel from corrosion in a low-chloride environment. The gravimetric studies showed that 96 % inhibition efficiency was achieved with the ternary system consisting of 50 ppm PBTC, 50 ppm Zn2+ ions, and 10 ppm silicate ions. Out of 0.310 mmol of Zn2+ ions, 0.218 mmol was diffused from the bulk of the solution to the metal surface, as revealed from the studies of the solutions by atomic absorption spectroscopy (AAS). Electrochemical methods (potentiostatic polarization and electrochemical impedance spectroscopy) and surface characterization techniques [Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM)] were used to ascertain the nature of the protective film and for explaining the mechanistic aspects of corrosion inhibition.  相似文献   

14.
Fluorescence imaging is a powerful tool for the visualization of biological molecules in living cells, tissue slices, and whole bodies, and is important for elucidating biological phenomena. Furthermore, zinc (Zn2+) is the second most abundant heavy metal ion in the human body after iron, and detection of chelatable Zn2+ in biological studies has attracted much attention. Herein, we present a novel, highly sensitive off–on fluorescent chemosensor for Zn2+ by using the internal charge transfer (ICT) mechanism. The rationale of our approach to highly sensitive sensor molecules is as follows. If fluorescence can be completely quenched in the absence of Zn2+, chemosensors would offer a better signal‐to‐noise ratio. However, it is difficult to quench the fluorescence completely before Zn2+ binding, and most sensor molecules still show very weak fluorescence in the absence of Zn2+. But even though the sensor shows a weak fluorescence in the absence of Zn2+, this fluorescence can be further suppressed by selecting an excitation wavelength that is barely absorbed by the Zn2+‐free sensor molecule. Focusing on careful control of ICT within the 4‐amino‐1,8‐naphthalimide dye platform, we designed and synthesized a new chemosensor ( 1 ) that shows a pronounced fluorescence enhancement with a blueshift in the absorption spectrum upon addition of Zn2+. The usefulness of 1 for monitoring Zn2+ changes was confirmed in living HeLa cells. There have been several reports on 4‐amino‐1,8‐naphthalimide‐based fluorescent sensor molecules. However, 1 is the first Zn2+‐sensitive off–on fluorescent sensor molecule that employs the ICT mechanism; most off–on sensor molecules for Zn2+ employ the photoinduced electron transfer (PeT) mechanism.  相似文献   

15.
《中国化学快报》2020,31(11):2933-2936
A highly sensitive fluorescent sensor ZnDN was designed, synthesized and used for tracking intracellular zinc ions in various living cells and direct imaging of prostatic tissue in mice. ZnDN was prepared from the heterocyclic-fused naphthalimide fluorophore, and the zinc receptor, N,N-bis(2-pyridylmethyl)ethylenediamine (BPEN). Upon addition of Zn2+ to the solutions of ZnDN, a remarkable fluorescence enhancement was observed, which could be attributed to the photo-induced electron transfer (PET) mechanism. Since ZnDN exhibited high sensitivity toward Zn2+ in phosphate buffer solution, with a limit of detection of 4.0 × 10−9 mol/L, it was further applied for the imaging of exogenous and endogenous Zn2+ in different living cells. Living cells imaging experiments suggested that ZnDN could image the changes of intracellular free zinc ions, and could be used for two-photon imaging. Moreover, flow cytometry suggested that ZnDN could distinguish cancerous prostate cells from normal cells. Animal experiments indicated that ZnDN had the potential in imaging prostate tissue in vivo.  相似文献   

16.
The effect of the metal cations, Na+, K+, Ca2+, Mg2+, Zn2+, and Ni2+, on the oxide film structure and morphology changes during long-term immersion corrosion tests of aluminum alloy (A3003) in model tap waters was investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The effect of the metal cations on the corrosion behavior was also investigated with mass change and electrochemical tests. The hardness of the metal cations, X, based on the hard and soft acids and bases (HSAB) concept was applied to explain the effect of metal cations on the passive oxide film structure and corrosion resistance. The mass change rate and corrosion current density decreased with increasing metal cation hardness. The XPS results showed that hard metal cations like Zn2+ and Ni2+ were incorporated in the oxide films, while the four soft metal cations were not incorporated in the oxide films. The results are in good agreement with those which could be expected from the HSAB hardness of the metal cations.  相似文献   

17.
Gholivand MB  Mozaffari Y 《Talanta》2003,59(2):399-407
A PVC membrane electrode based on bis(2-nitrophenyl)disulfide carrier exhibits a very good response for Zn2+ in a wide concentration range (from 2.9×10−7 to 3.2×10−2 mol l−1) with a slope of 29.9±0.4 mV per decade of Zn2+ concentration. The response time of the sensor is about 10 s and the membrane can be used for more than 3 months without any observed divergence in potentials. The proposed sensor exhibits very good selectivity for Zn2+ over many cations and can be used in a wide pH range (2-9). This assembly served also as an indicator electrode in potentiometric titrations involving zinc ions and direct potentiometric determination of zinc ions in real and synthetic samples.  相似文献   

18.
The extraction of ammine complexes of Cu2+, Cd2+, Ni2+, Co2+ and Zn2+ by synthesised manganese, nickel and zinc silicates has been studied at different pH and ionic concentrations in the external solution. It has been found that the uptake of the metal ion Co2+, Cu2+ and Zn2+ increases with increase in pH of the external solution, attains a maximum and then decreases. However, the uptake for Cd2+ and Ni2+ increases continuously. The qA values of all the silicates increases with the increase in the concentration of the exchanging ion and its order for the investigated metal ions is Ni2+ < Co2+ < Cd2+ < Zn2+ < Cu2+.  相似文献   

19.
Summary In a previous paper we studied the interaction of the radionuclides 110mAg, 60Co and 65Zn with peat humin. These nuclides are among the fission or corrosion products in nuclear reactors. The aim of this paper is to study the effect of certain ligands, which are present in the environment, such as humic acid, fulvic acid, EDTA and urea, on the sorption of these radionuclides by humin. The obtained results indicated that urea has no effect on the sorption of Co and Zn by humin, and only a little in case of Ag. However, the presence of the other ligands (humic acid, fulvic acid or EDTA) leads to different decreases in the sorption of the three nuclides by humin. The results are interpreted in the light of the complex formation between ligands and the metal cations and of the strength of binding of these cations to the humin sorbent. The release of Ag+in the presence of different ligands was found to follow the order: humic acid>EDTA>fulvic acid>urea. In the case of both Co2+and Zn2+, the sequence is changed to be: EDTA>humic acid>fulvic acid>urea, with a higher release in the case of Zn2+. The results showed that cobalt is bound more strongly to humin than silver and zinc. The sulphur content of the humic fractions plays a significant role in the competition for silver and zinc.  相似文献   

20.
A water-soluble, small molecular zinc fluorescence probe (ZFP) based on 2-(2′-hydroxyphenyl) benzoxazole was prepared. It exhibited high selectivity and sensitivity to Zn2+ than the other metal ions. The highest fluorescence enhancement was observed in the presence of Zn2+ owing to the inhibition of excited-state intramolecular proton transfer (ESIPT). Furthermore, fluorescence imaging experiments confirmed that ZFP can be used to monitor Zn2+ in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号