首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the present study, a novel probe for the simultaneous evaluation of one‐electron reducing systems (electron transport chain) and one‐electron oxidizing systems (free radical reactions) in cells by electron chemical detection was developed. Six‐membered cyclic nitroxyl radicals (2,2,6,6‐tetramethylpiperidine‐1‐oxyl; TEMPO series) are sensitive to one‐electron redox systems, generating the hydroxylamine form [TEMPO(H)] via one‐electron reduction, and the secondary amine form [TEMPO(N)] via one‐electron oxidation in the presence of thiols. In contrast, the sensitivities of five‐membered cyclic nitroxyl radicals (2,2,5,5‐tetramethylpyrrolidine‐1‐oxyl; PROXYL series) to the one‐electron redox systems are comparatively low. The electron chemical detector can detect 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO), TEMPO(H) and PROXYL but not TEMPO(N). Therefore, nitroxyl biradical, TEMPO‐PROXYL, as a probe for the evaluation of one‐electron redox systems was employed. TEMPO‐PROXYL was synthesized by the conjunction of 4‐amino‐TEMPO with 3‐carboxyl‐PROXYL via the conventional dicyclohexyl carbodiimide reaction. TEMPO‐PROXYL, TEMPO(H)‐PROXYL and TEMPO(N)‐PROXYL were simultaneously quantified by HPLC with Coularray detection. Calibration curves for the quantification of TEMPO‐PROXYL, TEMPO(H)‐PROXYL and TEMPO(N)‐PROXYL were linear in the range from 80 nm to 80 μm , and the lowest quantification limit of each molecule was estimated to be <80 nm . The relative standard deviations at 0.8 and 80 μm were within 10% (n = 5). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The Laviron's interaction model, dedicated to randomly distributed electroactive adsorbed species, was extended to a non-random distribution in order to extract the current–voltage characteristics from any surface distribution of electroactive centers on self-assembled monolayer (SAM). Confronted to electrochemical behaviour of nitroxyl radical SAMs, the agreement observed between theory and experiments provides evidence of a distribution independence of the interaction parameters.  相似文献   

3.
4-Pentenylketenes 4a and 9 and cyclopropylketenes 3a, 13, 14 (RCH=C=O) are generated by photochemical Wolff rearrangements and observed by IR as relatively long-lived species at room temperature in hydrocarbon solvents. The reactions of these ketenes with the nitroxyl radicals tetramethylpiperidinyloxyl (TEMPO, TO*) and tetramethylisoindoline-2-oxyl (TMIO, IO*) form carboxy substituted 5-hexenyl and cyclopropylmethyl radicals which are either trapped by a second nitroxyl radical or undergo rearrangements followed by trapping. The rate constant of the reaction of 4a with TEMPO was similar to that of n-BuCH=C=O (1b), while 3a was 4.3 times more reactive, indicating cyclopropyl stabilization of the incipient radical.  相似文献   

4.
TR ESR spectroscopy was applied to the study of the quenching of excited dioxouranium (VI) (uranyl) nitrate and sulfate by stable nitroxyl radicals of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) family. Photoexcitation of uranyl in solutions of alcohols of moderate viscosity (η = 3-10 cP) in the presence of TEMPO leads to CIDEP signals of TEMPO due to a radical triplet pair mechanism (RTPM). Polarized nitroxyls were also observed in solutions of polyelectrolyte sodium poly(styrenesulfonate), NaPSS, in the presence of the nitroxyl with a positively charged trimethylammonium group. Photolysis of uranyl salts in solutions of alcohols leads to the generation of free radicals of alcohols. No CIDEP of these radicals was observed, distinguishing U2 2+* from its organic analog, the triplet benzophenone. The probable reason for the lack of polarization in uranyl photoreduction reactions is the difficult access of free radicals to the U atom of the solvated radical UO2+ (V); this atom bears the unpaired electron. The role of polyelectrolytes in the enhancement of the quenching of excited states is discussed. Results are in agreement with the statement that photoexcited uranyl has a triplet multiplicity.  相似文献   

5.
Titanium-oxygen bonds derived from stable nitroxyl radicals are remarkably weak and can be homolyzed at 60 degrees C. The strength of these bonds depends sensitively on the ancillary ligation at titanium. Direct measurements of the rate of Ti-O bond homolysis in Ti-TEMPO complexes Cp2TiCl(TEMPO) (3) and Cp2TiCl(4-MeO-TEMPO) (4) (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-MeO-TEMPO = 2,2,6,6-tetramethyl-4-methoxypiperidine-N-oxyl) were conducted by nitroxyl radical exchange experiments. Eyring plots gave the activation parameters, deltaH++ = 27(+/- 1) kcal/mol, deltaS++ = 6.9(+/- 2.3) eu for 3 and deltaH++ = 28(+/- 1) kcal/mol, deltaS++ = 9.0(+/- 3.0) eu for 4, consistent with a process involving the homolysis of a weak Ti-O bond to generate the transient Cp2Ti(III)Cl and the nitroxyl radical. Thermolysis of the titanocene TEMPO complexes in the presence of epoxides leads to the Cp2Ti(III)Cl-mediated ring-opening of the epoxide followed by trapping by the nitroxyl radical. The X-ray crystal structure of the Ti-TEMPO derivative, Cp2TiCl(4-MeO-TEMPO) (4), is reported. DFT (B3LYP/6-31G*) calculations and experimental studies reveal that the strength of the Ti-O bond decreases dramatically with the number of cyclopentadienyl groups on titanium. The calculated Ti-O bond strength of the monocyclopentadienyl complex 2 is 43 kcal/mol, whereas that of the biscyclopentadienyl complex 3 is 17 kcal/mol, a difference of 26 kcal/mol. These studies reveal that the strength of these Ti-O bonds can be tuned over an interesting and experimentally accessible temperature range by appropriate ligation on titanium.  相似文献   

6.
Nitroxide‐mediated ‘living’ free radical polymerisation (LREP) was employed for the first time to prepare graft copolymer by having arylated poly (vinyl chloride) (PVC‐Ph) as a backbone and polystyrene (PS) as branches. The graft copolymerization of styrene was initiated by arylated PVC carrying 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) groups as a macroinitiator. Thus, the arylated PVC was prepared in the mild conditions and these reaction conditions could overcome the problem of gelation and crosslinking in polymers. Then, 1‐hydroxy TEMPO was synthesized by the reduction of TEMPO with sodium ascorbate. This functional nitroxyl compound was coupled with brominated arylated PVC (PVC‐Ph‐Br). The resulting macro‐initiator (PVC‐Ph‐TEMPO) for ‘living’ free radical polymerization was then heated in the presence of styrene to form graft copolymer. DSC, GPC, 1HNMR, and FT‐IR spectroscopy were employed to investigate the structure of the polymers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Russian Chemical Bulletin - A novel heterogeneous catalytic system based on the TEMPO nitroxyl radical encapsulated into the cavities of copper-doped ZIF-8 metal-organic framework was synthesized...  相似文献   

8.
Development of a stable nitroxyl radical class of catalysts, 2-azaadamantane N-oxyl (AZADO) and 1-Me-AZADO, for highly efficient oxidation of alcohols is described. AZADO and 1-Me-AZADO exhibit superior catalytic proficiency to TEMPO, converting various sterically hindered alcohols to the corresponding carbonyl compounds in excellent yields.  相似文献   

9.
Regenerated cellulose (viscose rayon) was oxidized using NaBr, NaClO and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) or one of ten related nitroxyl radicals in water at pH 10–11. The C6 primary hydroxyl groups in rayon were oxidized to carboxyl groups in most cases, thus giving water-soluble products. However, the oxidation times required for complete dissolution of the products varied substantially, depending on the nitroxyl radical used. Weight average degrees of polymerization (DPw) of the oxidized products were determined by means of high performance size exclusion chromatography (HPSEC) using pullulan standards. All the products had bimodal HPSEC distribution patterns, probably reflected by the solid-state structure of viscose rayon. When 4-acetamido-TEMPO and 4-carboxy-TEMPO were used, cellouronic acids having almost homogeneous chemical structures with higher DPw than for TEMPO were obtained quantitatively within 30 min. The oxidations using 4-amino-TEMPO, 4-carboxy-PROXYL and 4-carbamoyl-PROXYL gave cellouronic acids having the highest DPw, although reaction times of more than 4 h were required, and some side reactions occurred on the products.  相似文献   

10.
A highly active organocatalyst for alcohol oxidation has been developed. 9-Azanoradamantane N-oxyl (Nor-AZADO 4), constituting an unhindered, stable nitroxyl radical, exhibits superior catalytic activity to 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and AZADOs in the oxidation of alcohols to their corresponding carbonyl compounds.  相似文献   

11.
Living free‐radical butyl acrylate polymerization in miniemulsion was initiated by polystyrene bearing a nitroxyl end group to yield polystyrene‐block‐poly(butyl acrylate) block copolymers. Polystyrene macroinitiator was obtained using different initiating systems (potassium persulfate or benzoyl peroxide) in the presence of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) or the more water‐soluble 4‐hydroxy‐2,2,6,6‐tetramethylpiperidin‐N‐oxyl (OH‐TEMPO). The nitroxide water‐solubility has an important influence in determining molecular weight distribution and controlling the growth of the second block.  相似文献   

12.
Bulk radical polymerization of styrene in the presence of nitronyl nitroxides (2-(4-substituted phenyl)-4,4,5,5-tetramethyl-4,5-dihydroimidazolyl-1-oxyl 3-oxide) was studied. All nitronyl nitroxides, like other nitroxyl radicals such as 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO), act as reversible radical scavengers. The efficiency of controlling the polymerization is affected by the substituent at the 4′-position. The efficiency increases with electron donating strength of 4′-substituents, at least at the beginning of the reaction. However, the thermal stability of nitronyl nitroxides decreases in the same order. Thus, TEMPO is more suitable than nitronyl nitroxides for controlled/“living” radical polymerization of styrene.  相似文献   

13.
Well‐defined graft copolymers with styrene butadiene rubber (SBR) backbones and polystyrene branches were synthesized by living free radical polymerization (LFRP) techniques. Thus 1‐ benzoyl‐2‐phenyl‐2‐(2′,2′,6′,6′‐tetramethyl‐piperidinyl‐1′‐oxy)ethane (BZ‐TEMPO) was synthesized and hydrolyzed to the corresponding 1‐hydroxyl derivative. This functional nitroxyl compound was coupled with brominated SBR (SBR‐Br). The resulting macroinitiator (SBR‐TEMPO) for “living” free radical polymerization was then heated in the presence of styrene for the formation of the controlled graft copolymer. 1H‐NMR and IR spectroscopy were used to investigate the structure of the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This review considers the correlation between the reactivity of nitroxyl radicals (piperidine, pyrroline, pyrrolidine, imidazoline, dihydroquinoline, tetrahydroquinoline, diphenyl nitroxide, etc.) and their chemical structure in terms of the rate constants of reactions between these radicals and hydrazobenzene. 4,4′-Di(tert-butyl)diphenyl nitroxyl has the highest reactivity, and the nitroxyl radical of benzoindolopyrrolidine is the least reactive (the difference is a factor of ∼104). The effects of the metal atom in stable organometallic nitroxyl radicals and of the halogen atom in halogenated nitroxyl radicals on the reactivity of the nitroxyl center are considered. Data on the effect of the nitroxyl center on the reactivity of functional groups in the piperidine nitroxyl radical are generalized. Nitroxyl radicals with an activated double bond are shown by quantum chemical calculations to form cyclic transition complexes with amines, involving both the paramagnetic center and a double bond. This explains why the activated double bond in nitroxyl radicals is more reactive in nucleophilic additions of amines than the same bond in their diamagnetic analogues. The rate constants of nitroxyl reduction with hydrazobenzene and of nitroxyl oxidation with tetranitromethane are related to the σESR constant derived from isotropic hyperfine coupling constants HFC(aN), and their correlation with Hammett constants is demonstrated. The role of solvents in the reduction and oxidation of the nitroxyl radicals is considered. The influence of hydroxyl radical-polar solvent complexes and hydroxylamine-polar solvent H complexes on the course of reactions is considered for hydrogen atom transfer in systems of a sterically hindered nitroxyl radical and hydroxylamine.__________Translated from Kinetika i Kataliz, Vol. 46, No. 4, 2005, pp. 506–528.Original Russian Text Copyright © 2005 by Malievskii, Shapiro.  相似文献   

15.
Mixed SAMs of nitroxyl radical derivative and alkanethiol have been studied by cyclic voltammetry in both aqueous and non-aqueous solvents. Cyclic voltammograms exhibit shapes as a function of surface coverage deviating from an “ideal system”. Confronted to Laviron’s interaction model, the agreement observed between theory and experiments provides evidence of a random distribution of electroactive centers on surface and indicates that the local ionic environment of charged redox centers plays a major role in the electrochemical behaviour of SAMs.  相似文献   

16.
In an ethanol/water mixture, the nitroxyl radical TEMPO abstracts a hydrogen atom from a phenolic OH group of the amphiphilic para-hexanoylcalix[4]arene, and the hydroxylamine TEMPOH formed yields a stable inclusion complex with another molecule of the calixarene.  相似文献   

17.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

18.
Poly[styrene-co-(N-vinylcarbazole)] copolymers with controlled molecular weights and narrow polydispersities were synthesized by nitroxide-mediated “living” free radical copolymerization using an initiator/capping agent system consisting of benzoyl peroxide (BPO) and the stable nitroxyl radical 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO). The copolymerization behaves in a “living” fashion and allows the synthesis of poly[styrene-co-(N-vinylcarbazole)]/polystyrene block copolymers via a controlled chain-extension reaction of the prepared copolymers with styrene.  相似文献   

19.
Novel multigraft copolymers of poly(methyl methacrylate‐graft‐polystyrene) (PMMA‐g‐PS) in which the number of graft PS side chains was varied were prepared by a subsequent two‐step living radical copolymerization approach. A polymerizable 4‐vinylbezenyl 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) monomer (STEMPO), which functioned as both a monomer and a radical trapper, was placed in a low‐temperature atom transfer radical polymerization (60°C) process of methyl methacrylate with ethyl 2‐bromopronionate (EPNBr) as an initiator to gain ethyl pronionate‐capped prepolymers with TEMPO moieties, PMMA‐STEMPOs. The number of TEMPO moieties grafted on the PMMA backbone could be designed by varying STEMPO/EPNBr, for example, the ratios of 1/2, 2/3, or 3/4 gained one, two, or three graft TEMPO moieties, respectively. The resulting prepolymers either as a macromolecular initiator or a trapper copolymerized with styrene in the control of stable free‐radical polymerization at an elevated temperature (120 °C), producing the corresponding multigraft copolymers, PMMA‐g‐PSs. The nitroxyl‐functionalized PMMA prepolymers produced a relatively high initiation efficiency (>0.8) as a result of the stereohindrance and slow diffusion of TEMPO moieties connected on the long PMMA backbone. The polymerization kinetics in two processes showed a living radical polymerization characteristic. The molecular structures of these prepolymers and graft copolymers were well characterized by combining Fourier transform infrared spectroscopy, gel permeation chromatography, chemical element analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1876–1884, 2002  相似文献   

20.
Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6‐tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra–high‐performance liquid chromatographic—tandem mass spectrometric (UHPLC‐ESI‐MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC‐ESI‐MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10?7 molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m?2 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号