首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

2.
In this study, three new vic-dioximes, [L1H2], N-(5-chloro-2-methoxyphenyl)amino-1-acetyl-1-yclohexenylglyoxime, [L2H2],N-(3-chloro-4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylgly-oxime and [L3H2], N-(3-chloro-2-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II) and Co(II) salts. The structures of these new compounds (ligands and complexes) were characterized with FT-IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrophotometer measurements, thermal methods (TGA), 1H NMR and 13C NMR spectral data and elemental analyses.  相似文献   

3.
Cobalt(II) and copper(II) complexes with three dioxime ligands cyclohexylamine-p-tolylglyoxime (L1H2), tert-butyl amine-p-tolylglioxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2), have been prepared. The metal to ligand ratios of the complexes were found to be 1?:?2. The Cu(II) complexes of these ligands are proposed to be square planar; the Co(II) complexes are proposed to be octahedral with water molecules as axial ligands. Ligands and complexes are soluble in common solvents such as DMSO, DMF, CHCl3 and C2H5OH. The ligands have been characterized by elemental analysis, IR, UV-VIS, 1H?NMR, 13C?NMR and thermogravimetric analysis (TGA). The complexes were characterized by elemental analysis, IR, UV-VIS, magnetic susceptibility measurements, thermogravimetric analysis (TGA) and electrochemistry. Electrochemical properties of metal complexes show quasi-reversible one-electron redox processes. However, Co(L1H)2 and Cu(L1H)2 complexes show another oxidation peak in the positive region. This single irreversible oxidation peak is caused by the cyclic ring of the ligand. Data also revealed that the electron transfer rates of metal complexes with L1H2 are higher than the other complexes.  相似文献   

4.
The synthesis and antimicrobial activity of palladium(II) and platinum(II) complexes derived from heterocyclic bidentate ligands, namely 2‐(2′‐aminophenyl)benzoxazole [L1H2], 2‐(2′‐hydroxyphenyl)benzoxazole [L2H], and 2‐(2′‐mercaptophenyl)benzoxazole [L3H], are reported here. These complexes have been characterized by elemental analyses, molecular weight determinations, conductance measurements, infrared, 1H NMR, and electronic spectral studies. The resulting colored complexes are monomeric in nature. On the basis of above‐described studies, square‐planar geometry has been suggested for the resulting complexes. The ligands and their metal complexes were tested against certain microorganisms to assess their antimicrobial properties. The results indicate that the metal complexes are found more active than the parent ligands. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:44–50, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20578  相似文献   

5.
Dialkyldithiophosphate derivatives of macrocyclic complexes of Pb(II), having N2S2 potential donors, of the general formula, [Pb(L)S2P(OR)2] (where L = macrocyclic ligands L1, L2, L3, L4 & L5 and R = CH3-, C3H7 n- & C3H7 i-) have been Synthesized from the reactions of [Pb(L)X2] (where X = Cl, NO3, or CH3COO) with sodium dialkyl dithiophosphates in 1:2 molar ratios in THF. Fifteen new derivatives have been synthesized by the combination of five macrocyclic complexes of 14–20 member rings with three different types of dialkyldithiophosphate. These compounds have been characterized by elemental analysis, molar conductance, molecular weight determination, IR, 1H NMR, 13C, and 31P NMR. Molecular weight determinations of these complexes indicate their monomeric nature. An octahedral structure is proposed.  相似文献   

6.
Two new soluble vic-dioxime ligands, 4-isopropylanilineglyoxime (L1H2) and 4-benzylpiperidineglyoxime (L2H2) were prepared by reacting 4-isopropylaniline and 4-benzylpiperidine with anti-chloroglyoxime. Ten metal complexes were obtanied by reacting both ligands with Cu(II),Ni(II),Co(II), Zn(II), and Cd(II) cations. The ligands and their metal complexes were elucidated by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR and also magnetic moments of the complexes were determined. The text was submitted by the authors in English.  相似文献   

7.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

8.
Monomeric copper(II) and nickel(II) complexes with tetradentate two new ligands, 2,2′-[(2E,5E)-hexane-2,5-diylidenedi- nitrilo]dibenzenethiol(H2L) and 2-hydroxybenzaldehyde (2E,5E)-hexane-2,5-diylidenehydrazone(H2L1) have been synthesized and characterized by elemental analyses, magnetic moments, molar conductance, 1H-NMR and 13C-NMR, IR, mass spectral studies, theoretical calculations (MM2 and AM1) molecular methods. The mononuclear metal complexes of H2L and (H2L1) were found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of metal complexes indicated that the metal ions were coordinated to the sulphur (-SH) and/or (-OH) oxygen and imine nitrogen atoms (C = N). All of the data obtained from spectral, and molecular mechanics (MM2) or semi empirical calculations (AM1) studies support the structural properties of ligands and its Cu(II) and Ni(II) metal complexes.  相似文献   

9.
With the aim of constructing hydrogen-bonding networks in synthetic complexes, two new ligands derived from cis,cis-1,3,5-triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer-sphere H-bond donors. The TACH framework offers a facial arrangement of three N-donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X-ray structural characterization of a series of CuI-X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facial N3 manner, yielding four-coordinate complexes with idealized C3 symmetry. The N−H units of the outer-sphere heterocycles form a hydrogen-bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrrole and H3Lindole with divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer-sphere H-bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH-based ligands with pendant H-bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H-bonding interactions.  相似文献   

10.
The metal templated Cd(II) cyclocondensation of 2,6-diacetylpiridine or 2,6-pyridinedicarbaldehyde and two different amines containing piperazine moieties have been investigated. The resulting ligands, L1 and L2 are 16- and L3 and L4 17-membered pentaaza macrocycles. The complexes have been characterized by a variety of methods including IR, 1H, 13C NMR, DEPT, COSY(H,H), HMQC(H,C), FAB spectrometry and conductivimetry measurements. The crystal structures of [CdL2Cl](CH3OH)ClO4 (2) and [CdL4(NO3)(H2O)]ClO4 (4) have been also determined, and it was shown that the geometry of the Cd(II) ion in the complexes is slightly distorted pentagonal pyramidal and pentagonal bipyramidal, respectively. The gas-phase structures of ligands, L2 and L4 and their Cd(II) complexes have also theoretically studied.  相似文献   

11.
New series of 1H-perimidine-2-thiol derivatives and (2-substituted-1H-perimidin-1-yl)ethane-1,2-dione derivatives and their ligands (C24H14N4S2O2) H2L1 and (C26H18N4S2O2) H2L2 have been synthesized with transition metal ions, e.g., Copper (II), Silver (I), Cobalt (II) and Ruthenium (III) were prepared and evaluated for their antimicrobial, analgesic and anti-inflammatory activities. The synthesized compounds and their complexes were characterized by elemental analysis, 1H NMR, IR, MS, molar conductance, thermal gravimetric analysis and electronic spectra. All results revealed that compounds 3 and 13 exhibited high inhibitory effects against some bacterial strains by the disc diffusion method. On the other hand, compounds 2, 3, 7 and 12 displayed potent anti-inflammatory activity.  相似文献   

12.
New chromium(III) complexes are synthesized by classical thermal and microwave (MW)-irradiated techniques. The Schiff bases 2-acetylfuran-S-benzyldithiocarbazate (L1H), 2-acetylthiophene-S-benzyldithiocarbazate (L2H), 2-acetylpyridine-S-benzyldithiocarbazate (L3H), and 2-acetylnaphthalene-S-benzyldithiocarbazate (L4H) were prepared by condensation of -S-benzyldithiocarbazate in ethanol with the respective ketones by using MW as well as conventional methods. The chromium(III) complexes have been prepared by mixing CrCl3 · 6H2O in 1 : 1 and 1 : 2 molar ratios with monofunctional bidentate ketimines. The structure of the ligands and their transition metal complexes were confirmed by elemental analysis, melting point determinations, molecular weight determinations, infrared (IR), electronic and electron paramagnetic resonance (EPR) spectral, and X-ray powder diffraction studies. On the basis of these studies it is clear that the ligands coordinated to the metal atom in a monobasic bidentate mode by S∩N donors. Thus, an octahedral environment around the chromium(III) has been proposed. The growth inhibiting potential of the ligands and complexes has been assessed against a variety of fungal and bacterial strains.  相似文献   

13.
Luminescent metal complexes are used in photooptical devices. Zinc(II) complexes are of interest because of the ability to tune their color, their high thermal stability and their favorable carrier transport character. In particular, some zinc(II) complexes with aryl diimine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum. Zinc(II) complexes bearing derivatized imidazoles have been explored for possible optoelectronic applications. The structures of two zinc(II) complexes of 5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole (L), namely dichlorido(dimethylformamide‐κO){5,6‐dimethyl‐2‐(pyridin‐2‐yl‐κN)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole‐κN3}zinc(II) dimethylformamide monosolvate, [ZnCl2(C20H18N4)(C3H7NO)]·C3H7NO, (I), and bis(acetato‐κ2O,O′){5,6‐dimethyl‐2‐(pyridin‐2‐yl‐κN)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole‐κN3}zinc(II) ethanol monosolvate, [Zn(C2H3O2)2(C20H18N4)]·C2H5OH, (II), are reported. Complex (I) crystallized as a dimethylformamide solvate and exhibits a distorted trigonal bipyramidal coordination geometry. The coordination sphere consists of a bidentate L ligand spanning axial to equatorial sites, two chloride ligands in equatorial sites, and an O‐bound dimethylformamide ligand in the remaining axial site. The other complex, (II), crystallized as an ethanol solvate. The ZnII atom has a distorted trigonal prismatic coordination geometry, with two bidentate acetate ligands occupying two edges and a bidentate L ligand occupying the third edge of the prism. Complexes (I) and (II) emit in the blue region of the spectrum. The results of density functional theory (DFT) calculations suggest that the luminescence of L results from π*←π transitions and that the luminescence of the complexes results from interligand charge‐transfer transitions. The orientation of the 2‐(pyridin‐2‐yl) substituent with respect to the benzimidazole system was found to have an impact on the calculated HOMO–LUMO gap (HOMO is highest occupied molecular orbital and LUMO is lowest unoccupied molecular orbital).  相似文献   

14.
Three new vic-dioxime ligands, [N-(ethyl-4-amino-1-piperidine carboxylate)-phenylglyoxime (L1H2), N-(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L2H2), and N,N′-bis(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L3H2)], and their Co(II) with Cu(II) metal complexes, were synthesized for the first time. Mononuclear complexes of these ligands with a 1:2 metal-ligand ratio were prepared with Co(II) and Cu(II) salts. The BF2+-capped Co(II) and mononuclear complexes of the vic-dioxime were prepared for [Co(L1·BF2)2] and [Co(L2·BF2)2]. The ligands act in a polydentate fashion bonding through nitrogen atoms in the presence of a base, as do most vic-dioximes. The cobalt(II) and copper(II) complexes are non-electrolytes as shown by their molar conductivities (ΛM) in DMF. The structures of the ligands and complexes were determined by elemental analyses, FT-i.r., u.v.–vis., 1H- and 13C-n.m.r. spectra, magnetic susceptibility measurements, and molar conductivity. The comparative electrochemical studies show that the stabilities of the reduced or oxidized species and the electrode potentials of the complexes are affected by the substituents attached on the oxime moieties of the complexes.  相似文献   

15.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

16.
A new 1,3,4‐oxadiazole bridging bent organic ligand, 2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole, C28H24N4O3, L, has been used to create three novel one‐dimensional isomorphic coordination polymers, viz. catena‐poly[[[dichloridomercury(II)]‐μ‐2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole] methanol monosolvate], {[HgCl2(C28H24N4O3)]·CH3OH}n, catena‐poly[[[dibromidomercury(II)]‐μ‐2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole] methanol monosolvate], {[HgBr2(C28H24N4O3)]·CH3OH}n, and catena‐poly[[[diiodidomercury(II)]‐μ‐2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole] methanol monosolvate], {[HgI2(C28H24N4O3)]·CH3OH}n. The free L ligand itself adopts a cis conformation, with the two terminal pyridine rings and the central oxadiazole ring almost coplanar [dihedral angles = 5.994 (7) and 9.560 (6)°]. In the HgII complexes, however, one of the flexible pyridylmethyl arms of ligand L is markedly bent and helical chains are obtained. The HgII atom lies in a distorted tetrahedral geometry defined by two pyridine N‐atom donors from two L ligands and two halide ligands. The helical chains stack together via interchain π–π interactions that expand the dimensionality of the structure from one to two. The methanol solvent molecules link to the complex polymers through O—H...N and O—H...O hydrogen bonds.  相似文献   

17.
Thiosemicarbazides and their metal complexes have attracted considerable interest because of their biological activities and their flexibility, which allows the ligands to bend and rotate freely to accommodate the coordination geometries of various metal centres. Discrete copper(II) and cadmium(II) complexes have been prepared by crystallization of N‐[2‐(2‐hydroxybenzoyl)hydrazinecarbonothioyl]propanamide (H3L) with Cu(CH3COO)2 or Cd(NO3)2 in a dimethylformamide/methanol mixed‐solvent system at room temperature, affording the complexes di‐μ‐acetato‐bis{μ4‐1‐[(2‐oxidophenyl)carbonyl]‐2‐(propanamidomethanethioyl)hydrazine‐1,2‐diido}tetracopper(II) dimethylformamide disolvate, [Cu4(C11H10N3O3S)2(C2H3O2)2]·2C3H7NO, (I), and bis{μ2‐[(2‐hydroxyphenyl)formamido](propanamidomethanethioyl)azanido}bis[(4,4′‐bipyridine)nitratocadmium(II)] dihydrate, [Cd2(C11H12N3O3S)2(NO3)2(C10H8N2)2]·2H2O, (II). Complex (I) consists of four CuII cations, two μ4‐bridging trianionic ligands and two μ2‐bridging acetate ligands, while complex (II) is composed of two CdII cations, two μ2‐bridging monoanionic ligands, two nitrate ligands and two 4,4′‐bipyridine ligands. These discrete complexes are connected by hydrogen bonds and van der Waals interactions to form a three‐dimensional supramolecular architecture. Compared with (I), the phenolic hydroxy group and hydrazide N atom of the thiosemicarbazide ligand of (II) are not involved in coordination and lead to a binuclear CdII complex. This different coordination mode may be attributed to the larger ionic radius of the CdII ion compared with the CuII ion.  相似文献   

18.
Two new vicinal dioxime ligands containing thiosemicarbazone units (L1H2 and L2H2) were synthesized and characterized using 1H NMR, 13C NMR, heteronuclear multiple quantum correlation, mass, infrared and UV–visible spectroscopies, elemental analysis and magnetic susceptibility measurements. In addition, homotrinuclear nickel(II), copper(II) and cobalt(II) complexes with a metal‐to‐ligand ratio of 3:2 for L1H2 and L2H2 were prepared. Synthesis of nickel(II) complex containing a BF2+ bridge was carried out using a precursor hydrogen‐bridged nickel(II) complex via the template effect. All metal–ligand complexes were tested against two human cancer cell lines (HL‐60 and HT‐29) for their antiproliferative and apoptotic activities. The results showed that [Co(L2H)2(H2O)2] and [Ni(L2H)2] exhibited the strongest antiproliferative activity with IpC50 values ranging between 5 and 10 μM, while [Co(L2H)2(H2O)2] and [Ni(L2H)2] both induced necrosis of HT‐29 cells and 60 and 65% apoptosis in HL‐60 cells, respectively.  相似文献   

19.
Two trinuclear Ni(II) complexes Ni3(L1)2(py)2(DMF)(H2O) (1) and Ni3(L2)2(py)2(DMF)2 (2) with two new trianionic pentadentate ligands N-(3,5-dimethylbenzoyl)-salicylhydrazide (H3L1) and N-(phenylacetyl)-5-nitrosalicylhydrazide (H3L2) have been synthesized and characterized by X-ray crystallography. Nickel ions in the two complexes have square-planar/octahedral/square-planar coordination. Central metal ion and two terminal metal ions in the two complexes are combined by two bridging deprotonated ligands, forming a trinuclear structural unit with an M–N–N–M–N–N–M core. Studies on the trinuclear Ni(II) complexes show that the β-branched N-acylsalicylhydrazide ligands with sterically flexible Cα methylene groups yield linear trinuclear Ni(II) complexes, while α-branched N-acylsalicylhydrazide ligands tend to form bent trinuclear Ni(II) complexes. Antibacterial screening data in a previous study indicates that bent trinuclear Ni(II) compound 1 is more active than linear compound 2 and less active than a tetranuclear nickel compound.  相似文献   

20.
In the present study two new series of Copper(II), Nickel(II) and Cobalt(II) complexes with two newly synthesized Schiff base ligands 4,6-bis(1-(4-bromophenylimino)ethyl)benzene-1,3-diol (H2L1), 4,6-bis(1-(4-methoxyphenylimino) ethyl)benzene-1,3-diol (H2L2) and organic ligands 8-hydroxy quinoline, 1,10-phenanthroline have been prepared. The Schiff bases H2L1 and H2L2 ligands were synthesized by the condensation of 4,6-diacetyl resorcinol with 4-bromo aniline and 4-methoxy aniline. The ligands and their metal complexes have been characterized by FT-IR, Mass, 1H NMR, UV–Vis., elemental analysis, ESR and Thermal gravimetric analysis. The Schiff base and their metal complexes were tested for antimicrobial activity against gram positive bacteria Staphylococcus aureus, Streptococcus pyogenes and gram negative bacteria Escherichia coli, Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger and Aspergillus clavatus using Broth Dilution Method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号