首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Oxygen reduction reaction (ORR) activities were evaluated for clean Pt(111) and Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Exposure of clean Pt(111) to 1.0 L CO at 303 K produced linear-bonded and bridge-bonded CO-Pt IR bands at 2093 and 1858 cm? 1. In contrast, 0.3-nm-thick Ni deposited on Pt(111) at 573 K (573 K-Ni0.3 nm/Pt(111)) produced broad IR bands for adsorbed CO at around 2070 cm? 1; the separation of reflection high-energy electron diffraction (RHEED) streaks is slightly wider for 573 K-Ni0.3 nm/Pt(111) than for the clean Pt(111). For 823 K-Ni0.3 nm/Pt(111), the separation of the RHEED streaks is the same as that for the Pt(111), and a single sharp IR band due to adsorbed CO is located at 2082 cm? 1. The results suggest that for the 823 K-Ni0.3 nm/Pt(111), a Pt-enriched outermost surface (Pt-skin) was formed through surface segregation of the substrate Pt atoms. ORR activities for the 573 K- and 823 K-Ni0.3 nm/Pt(111) as determined from linear sweep voltammetry curves were five times and eight times higher than that for clean Pt(111), respectively, demonstrating that Pt-skin generation is crucial for developing highly active electrode catalysts for fuel cells.  相似文献   

2.
Novel hexabutylsulphonyltribenzotetraazachlorin–fullerene (C60) complexes of iron (FeHBSTBTAC–C60) and cobalt (CoHBSTBTAC–C60) have been synthesized and their electrochemistry and oxygen reduction reaction (ORR) compared with their octabutylsulphonylphthalocyanine analogues (FeOBSPc and CoOBSPc). It is proved that electron-withdrawing substituents (–SO2Bu and C60) on phthalocyanine macrocycle exhibit distinct impact on the solution electrochemistry of these metallophthalocyanine (MPc) complexes. The more electron-withdrawing C60 substituent suppressed ORR compared to the –SO2Bu in alkaline medium. FeOBSPc showed the best ORR activity involving a direct 4-electron mechanism, a rate constant of ~1 × 108 cm3 mol?1 s?1 and a Tafel slope of ?171 mV dec?1.  相似文献   

3.
The potentiometric response characteristics of zinc ion selective PVC-based membrane electrode employing 1,12,14-triaza-5,8-dioxo-3(4),9(10)-dibenzoyl-1,12,14-triene as an inophore was investigated. The proposed electrode exhibits a Nernstian behavior with a slope of 29.2 ± 0.4 mV per decade with a working concentration range of 1.3 × 10?7–1.0 × 10?1 mol L?1 and a detection limit of 1.0 × 10?8 mol L?1. The membrane having the composition as TDODBCPT:O-NPOE:PVC:OA; 7:57:30:6 wt.% exhibits the best results. It has a fast response time of 7 s and can be used for at least 100 days without any considerable divergence in potential. The proposed electrode show good discrimination of Zn2+ ion from diverse ions. The potential response remains constant over a pH range of 3.5–9.2. The electrode found well work under laboratory conditions. The proposed sensor directly used for determination of zinc ions in human hair sample, wastewater and an indicator electrode with EDTA titration.  相似文献   

4.
The adsorption of uranium (VI) from aqueous solutions onto natural sepiolite has been studied using a batch adsorber. The parameters that affect the uranium (VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated and optimized conditions determined. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of sepiolite and experimental results showed this to be 34.61 mg · g?1. The experimental results were correlated reasonably well by the Langmuir adsorption isotherm and the isotherm parameters (Qo and b) were calculated. Thermodynamic parameters (ΔH° = ?126.64 kJ · mol?1, ΔS° = ?353.84 J · mol?1 · K?1, ΔG° = ?21.14 kJ · mol?1) showed the exothermic heat of adsorption and the feasibility of the process. The results suggested that sepiolite was suitable as sorbent material for recovery and adsorption of uranium (VI) ions from aqueous solutions.  相似文献   

5.
Catalytic activity of a polycrystalline gold electrode toward oxygen reduction reaction (ORR) in aqueous alkaline media in the presence of various alkali-metal sulfates (M2SO4, M = Li, Na, K, Rb and Cs) was investigated by hydrodynamic voltammetry. The fraction of 4e? pathway in low overpotentials (? 0.1 to ? 0.3 V) depended on the alkali-metal cations (Rb ? Na, K, Cs, Li). A complete 4e? reduction of O2 was only attained in the presence of Rb+ cation in the solution, which was comparable or even superior to that reported at the Au(100) single crystal electrode.  相似文献   

6.
This paper presents a novel thin-film electrolyte of a 2:1 blend of polyetheramine (glyceryl poly(oxypropylene)) and cross-linked oligomeric poly(propylene oxide) diacrylate with LiTFSI. The polyetheramine acts as a surfactant, and can thereby be applied as a conformal coating on complex surfaces—here demonstrated for porous LiFePO4 cathodes—making it useful for 3D-microbatteries. The poly(propylene oxide) diacrylate blends with the surfactant and is easily UV cross-linked, thereby ensuring good mechanical stability. Electrolytes, ~ 2 μm thick, were casted onto LiFePO4 cathodes and cycled against metallic lithium, displaying stable discharge capacities of ~ 8 mAh/g at room temperature and ~ 120 mAh/g at 60 °C. The electrolyte showed conductivities of 3.45 × 10? 6 and 5.80 × 10? 5 S cm? 1 at room temperature and 60 °C, respectively.  相似文献   

7.
The precursor [FeIII(L)Cl] (LH2 = N,N′-bis(2′-hydroxy-benzyliden)-1,6-diamino-3-azahexane) has been prepared and Mössbauer spectroscopy assigned a high-spin (S = 5/2) state at room temperature. The precursor is combined with the bridging units [SbV(X)6]? (X = CN?, NCS?) to yield star-shaped heptanuclear clusters [(LFeIII–X)6SbV]Cl5. The star-shaped compounds are in general high-spin systems at room temperature. On cooling to 20 K some of the iron(III) centers switch to the low-spin state as indicated by Mössbauer spectroscopy, i.e. multiple electronic transitions. While the cyano-bridged complex performs a multiple spin transition the thiocyanate-compound shows no significant population at both temperatures.  相似文献   

8.
Electron paramagnetic resonance (EPR) study of Cu2+ doped bis (glycinato) Mg (II) monohydrate single crystals is carried out at room temperature. Copper enters the lattice substitutionally and is trapped at two magnetically inequivalent sites. The observed spectra are fitted to a spin-Hamiltonian of rhombic symmetry with the following values of the parameters: Cu2+ (I), gx = 2.1577 ± 0.0002, gy = 2.2018 ± 0.0002, gz = 2.3259 ± 0.0002, Ax = (87 ± 2) × 10?4 cm?1, Ay = (107 ± 2) × 10?4 cm?1, Az = (141 ± 2) × 10?4 cm?1; Cu 2+ (II), gx = 2.1108 ± 0.0002, gy = 2.1622 ± 0.0002, gz = 2.2971 ± 0.0002, Ax = (69 ± 2) × 10?4 cm?1, Ay = (117 ± 2) × 10?4 cm?1and Az = (134 ± 2) × 10?4 cm?1. The ground state wave function of the Cu2+ ion in this lattice is evaluated to be predominantly |x2 ? y2. The g-factor anisotropy is also calculated and compared with the experimental value. With the help of the optical absorption study, the nature of bonding in the complex is discussed.  相似文献   

9.
The cathode electrode structure of the direct methanol fuel cell (DMFC) was improved by a novel catalyst ink preparation method. Regulation of the solvent polarity in the cathode catalyst ink caused increases in the electrochemical active surface (EAS) for the oxygen reduction reaction (ORR) as well as decreases in the methanol crossover effect. In a two-step preparation, agglomerates consisting of catalyst and Nafion ionomers were decreased in size, and polar groups in the ionomers formed organized networks in the cathode catalyst layer. Despite Pt catalysts in the cathode being only 0.5 mg cm? 2, the maximum power density of the improved membrane electrode assembly (MEA) was 120 mW cm? 2, at 3 M methanol, which was much larger than that of traditional MEA (67 mW cm? 2).  相似文献   

10.
The behavior of a modified carbon platinum electrode (Pt) for lead(II) determination by square wave voltammetry (SWV) was studied. The modified electrode is obtained by electrodeposition of hydroxyapatite (HAP) on the surface of a bare platinum electrode. The new electrode (HAP/Pt) revealed interesting electroanalytical detection of lead(II) based on the adsorption of this metal onto hydroxyapatite under open circuit conditions. After optimization of the experimental and voltammetric conditions, the best voltammetric responses-current intensity and voltammetric profile were obtained in 0.2 mol L?1 KNO3 with: 30 min accumulation time, 5 mV pulse amplitude and 1 mV s?1 scan rate. The observed detection (DL, 3σ) and quantification (DL, 10σ) limits in pure water were 2.01 × 10?8 and 6.7 × 10?7 mol L?1, respectively. The reproducibility of the proposed method was determined from five different measurements in a solution containing 2.2 × 10?6 mol L?1 lead(II) with a coefficients of variation of 2.08%.The electrochemical of hydroxyapatite at platinum surfaces was characterized, after calcinations 900 °C, by X-ray diffraction, infrared spectroscopy, chemical and electrochemical analysis.  相似文献   

11.
We prepared polyaniline-poly(4-styrenesulfonate) nanoparticles (PANI/PSS-NPs) by chemical oxidation polymerization in aqueous solution. We investigated the potential of the PANI/PSS-NPs to be used as an anode electrode for electrochromic devices and the effect of Li+ insertion (or deinsertion) kinetics and diffusion of Li+. A uniform electrochromic layer of PANI/PSS-NPs with a size of ca. 28 nm could be obtained by a solution process, specifically spin coating. The PANI/PSS-NPs film has a high Li+ diffusion coefficient (~7.7 × 10?9 cm2 s?1) and low charge transfer resistance (~99 Ω), which result in its having a fast electrochromic response time (coloring time <1.7 s, bleaching time <2.4 s), and high coloration efficiency (>108 cm2 C?1).  相似文献   

12.
Square-wave voltammetry was used to explore the adsorption property of ofloxacine complex with iron ion on the hanging mercury drop electrode (HMDE). By employing the adsorptive stripping voltammetric approach, a sensitive electroanalytical method for the quantitative analysis of ofloxacine antibiotic was achieved. A well-developed voltammetric peak was obtained in pH 7.5 Britton–Robinson buffer (B–R buffer) at ?1400 mV. The cyclic voltammetric studies indicated that the reduction process was irreversible and primarily controlled by adsorption. An investigations of the variation of adsorptive voltammetric peak current with supporting electrolyte, pH, accumulation time, accumulation potential, ion concentration, scan rate, pulse amplitude, SW frequency, working electrode area and convection rate has resulted in the recognition of optimal experimental conditions for ofloxacine analysis. The studied electroanalytical signal showed a linear response for ofloxacine in the concentration range 5 × 10?7 to 1.7 × 10?6 mol l?1 (r = 0.999). A limit of detection of 1.1 × 10?8 mol l?1 (3.98 ppb) with relative standard deviation of 1.21 RSD% and mean recovery of 99.6% were obtained. Possible interferences by several substances usually present in pharmaceutical formulation were also evaluated. The analytical quantification of ofloxacine in commercially available pharmaceutical formulation was performed and compared with data from HPLC technique.  相似文献   

13.
Binding of copper to three peptide fragments of prion (Cu2+ binding sites: 60–91, 92–96 and 180–193 amino acid residues) was investigated by anodic stripping voltammetry to determine the stoichiometries of Cu2+-prion peptide interactions. The method relies on the synthesis of N-terminally acetylated/C-terminally amidated peptide fragments of prion by solid-phase synthesis and direct monitoring of the oxidation current of copper in the absence and presence of each prion fragment. Titration curves of Cu2+ with Ac-PHGGGWGQ-NH2, Ac-GGGTH-NH2 and Ac-VNITKQHTVTTTT-NH2 were obtained in concentrations ranging from 8.52 × 10?7 to 5.08 × 10?6, 3.95 × 10?7 to 1.94 × 10?6 and 7.82 × 10?8 to 4.51 × 10?7 M, respectively. The acquired data were used to calculate the stoichiometries (one peptide per Cu2+ ion for all the three studied systems) and apparent dissociation constants (Kd = 4.37 × 10?8–3.50 × 10?10 M) for the three complexes.  相似文献   

14.
A new sorbent material for removing Cr(VI) anionic species from aqueous solutions has been investigated. Adsorption equilibrium and thermodynamics of Cr(VI) anionic species onto reed biomass were studied at different initial concentrations, sorbent concentrations, pH levels, temperatures, and ionic strength. Equilibrium isotherm was analyzed by Langmuir model. The experimental sorption data fit the model very well. The maximum sorption capacity of Cr(VI) onto reed biomass was found to be 33 mg · g?1. It was noted that the Cr(VI) adsorption by reed biomass decreased with increase in pH. An increase in temperature resulted in a higher Cr(VI) loading per unit weight of the adsorbent. Removal of Cr(VI) by reed biomass seems to be mainly by chemisorption. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for Cr(VI) adsorption on reed biomass were estimated as 2205 kJ · kg?1 · K?1 and 822 kJ · kg?1, respectively. The values of isosteric heat of adsorption varied with the surface loading of Cr(VI).  相似文献   

15.
Densities of {poly(ethylene glycol) [PEG] + water} prepared with PEG average molar mass (200, 400, 600, and 1500) g · mol?1 have been measured over the entire composition range over the temperature range (283.15 to 363.15) K at 10 K intervals using a density meter based on electromagnetically-induced oscillations of a U-shaped glass tube and an inbuilt Peltier thermostat. The density versus temperature data of (PEG + water) at each composition for all PEGs were fit to a simple quadratic equation: ρ/(g · cm?3) = ρ0/(g · cm?3) + a(T/K) + b(T/K)2. Fits were observed to be satisfactory at each composition for all four (PEG + water). The excess molar volumes of (PEG + water) are observed to be negative and significant over the entire composition range for all four (PEG + water). Irrespective of the temperature, the maximum absolute excess molar volumes are observed in the water-rich region of the mixture and are found to decrease with increasing temperature. This is attributed to the presence of strong interactions within the (PEG + water). Specifically, it is proposed to be due to the H-bonding interactions between the PEG and the water molecules within the mixtures.  相似文献   

16.
Nitric acid and thermal activation of graphite granules were explored to increase the electrocatalytic performance of dissolved oxygen reduction at neutral pH for microbial fuel cell (MFC) applications. Electrochemical experiments showed an improvement of +400 mV in open circuit potential for graphite granules when they were activated. The improvement of ORR performance observed with activated granules was correlated to the increase of Brunauer–Emmett–Teller (BET) surface of the activated material and the emergence of nitrogen superficial groups revealed by X-ray photoelectron spectroscopy (XPS) analysis on its surface.The use of activated graphite granules in the cathodic compartment of a dual-chamber MFC led to a high open circuit voltage of 1050 mV, which is among one of the highest reported so far. The stable performance of this cathode material (current density of 96 A m?3 at +200 mV/Ag–AgCl) over a period of 10 days demonstrated its applicability as a cathode material without any costly noble metal.  相似文献   

17.
A novel biosensor using poly(3,4-ethylene dioxythiophene) (PEDOT) modified Pt electrode was developed for selective determination of dopamine (DA) in presence of high concentrations of ascorbic acid (AA) and uric acid (UA) with a maximum molar ratio of 1/1000, and 1/100 in the presence of sodium dodecyl sulfate (SDS). SDS forms a monolayer on PEDOT surface with a high density of negatively charged end directed outside the electrode. The electrochemical response of dopamine was improved by SDS due to the enhanced accumulation of protonated dopamine via electrostatic interactions. The common overlapped oxidation peaks of AA, UA and DA can be resolved by using SDS as the DA current signal increases while the corresponding signals for AA and UA are quenched. The use of SDS in the electrochemical determination of dopamine using linear sweep voltammetry at modified electrode PEDOT/Pt resulted in detecting dopamine at relatively lower concentrations. The DA concentration could be measured in the linear range of 0.5 to 25 μmol L? 1 and 30 μmol L? 1 to 0.1 mmol L? 1 with correlation coefficients of 0.998 and 0.993 and detection limits 61 nmol L? 1 and 86 nmol L? 1, respectively. The validity of using this method in the determination of dopamine in human urine was also demonstrated.  相似文献   

18.
A novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction of luminol and diperiodatocuprate (K2[Cu(H2IO6)(OH)2], DPC) in alkaline medium to emit CL, which is greatly enhanced by DHZS. The possible CL mechanism was first proposed based on the kinetic characteristic, CL spectrum and UV spectra. The optimum condition for the CL reaction was in detail studied using flow-injection system. The experiments indicated that under optimum condition, the CL intensity was linearly related to the concentration of DHZS in the range of 7.0 × 10?9 to 8.6 × 10?7 g mL?1 with a detection limit (3σ) of 2.1 × 10?9 g mL?1. The proposed method had good reproducibility with the relative standard deviation 3.1% (n = 7) for 5.2 × 10?8 g mL?1 of DHZS. This method has the advantages of simple operation, fast response and high sensitivity. The special advantage of the system is that very low concentration of luminol can react with DPC catalyzed by DHZS to get excellent experiment results. And CL cannot be observed nearly when luminol with same concentration reacts with other oxidants, so luminol–DPC system has higher selectivity than other luminol CL systems. The method has been successfully applied to determine DHZS in serum.  相似文献   

19.
Densities of (water + hexamethylphosphoric triamide) in the entire mole-fraction composition at five temperatures, from (288.15 to 308.15) K, and atmospheric pressure were measured by using a magnetic float densimeter with an error of ±1.1 · 10?5 g · cm?3. Excess molar volumes of the mixtures and apparent molar volumes of the components (down to their infinite dilution) were calculated. The volumetric effects of mixing being very large in magnitude present negative deviations from ideality and become decreasingly negative with increasing temperature. The apparent molar volume of organic co-solvent displays a clearly pronounced minimum in the water-rich region at all the temperatures studied. It has been shown that there is a thermodynamically substantiated interrelation between volume and enthalpy (heat capacity) properties of the mixtures considered.  相似文献   

20.
Cyanamide was used in the preparation series of metal–nitrogen–carbon (M–N–C) oxygen reduction catalysts. The best catalyst, treated at 1050 °C, shows good performance versus previously reported non-precious metal catalysts with an OCV ~ 1.0 V and a current density of 105 mA/cm2 (iR-corrected) at 0.80 V in H2/O2 fuel cell testing (catalyst loading: 4 mg cm? 2). Although nitrogen content has been previously correlated positively with ORR activity, no such trend is observed here for any nitrogen type. The combined effects of nitrogen and sulfur incorporation into the carbon may account for the high activity of the 1050 °C catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号