首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

2.
The electrochemical measurements were carried out by using thermophilic cytochrome P450 CYP119A2 (P450st) modified with poly(ethylene oxide) (PEO) in PEO200 as an electrochemical solvent. The PEO modified P450st gave clear reduction–oxidation peaks by cyclic voltammetry in oxygen-free PEO200 up to 120 °C. The midpoint potential measured for the P450st was −120 mV vs. [Fe(CN)6]4−/[Fe(CN)6]3− at 120 °C. The peak separation, ΔE, was 16 mV at 100 mV/s. The estimated electron transfer rate of PEO-P450st at 120 °C was 35.1 s−1. The faster electron transfer reaction was achieved at higher temperatures. The electrochemical reduction of dioxygen was observed at 115 °C with the PEO-modified P450st system.  相似文献   

3.
Spontaneously adsorbed monolayers of [Ru(bpy)2PIC](PF6)2 have been formed on fluorine doped tin oxide macro- and microelectrodes, bpy is 2,2′-bipyridyl and PIC is 2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline. These monolayers exhibit well-defined, almost ideal electrochemical responses over a wide range of voltammetric scan rates. The formal potential of the Ru2+/3+ process shifts by less than 30 mV upon immobilization suggesting that the monolayers are well solvated. Significantly, chronoamperometry, conducted on a microsecond timescale, reveals that protonation of the PIC bridging ligand modulates the rate of interfacial electron transfer. The heterogeneous electron transfer rate constant, measured at an overpotential of +50 mV, decreases from 7.0 ± 1.1 × 105 to 0.7 ± 0.1 × 105 s−1 as the pH of the supporting electrolyte is increased from 1.7 to 9.3. These observations are consistent with the redox mechanism occurring via a heterogeneous electron transfer process, the rate of PIC which depends on the energy difference between the metal dπ-orbitals and the lowest unoccupied molecular orbital (LUMO) of the bridge. Protonation of the bridging ligand decreases this energy gap, resulting in an overall increase in the rate of the redox reaction. Significantly, despite the close proximity of the luminophores to a conducting surface, the monolayers remain luminescent suggesting that the electronically excited state is only weakly coupled to the electrode surface. This is consistent with bipyridyl as the site of the excited state in the metal complex.  相似文献   

4.
For the first time, iodinated BODIPY dyes with phenylamine or 8-hydroxylquinoline moiety at the meso-position on the BODIPY core were tested for the light-driven production of H2 from the acidic aqueous solutions.  相似文献   

5.
A protein-based electrochemical sensor for hydrogen peroxide (H2O2) was developed by an easy and effective film fabrication method where spinach ferredoxin (Fdx) containing [2Fe–2S] metal center was cross linked with 11-mercaptoundecanoic acid (MUA) on a gold (Au) surface. The surface morphology of Fdx molecules on Au electrodes was investigated by atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to study the electrochemical behavior of adsorbed Fdx on Au. The interfacial properties of the modified electrode were evaluated in the presence of Fe(CN)63?/4? redox couple as a probe. From CV, a pair of well-defined and quasi-reversible redox peaks of Fdx was obtained in 10 mM, pH 7.0 Tris–HCl buffer solution at ?170 and ?120 mV respectively. One electron reduction of the [2Fe-2S]2+ cluster occurs at one of the iron atoms to give the reduced [2Fe-2S]+. The formal reduction potential of Fdx ca. ?150 mV (vs. Ag/AgCl electrode) at pH 7.0. The electron-transfer rate constant, ks, for electron transfer between the Au electrode and Fdx was estimated to be 0.12 s?1. From the electrochemical experiments, it is observed that Fdx/MUA/Au promoted direct electron transfer between Fdx and electrode and it catalyzes the reduction of H2O2. The Fdx/MUA/Au electrode displays a linear increase in amperometric current for increasing concentration of H2O2.The sensor calibration plot was linear with r2 = 0.998 with sensitivity approximately 68.24 μAm M?1 cm?2. Further, the effect of nitrite on the developed sensor was examined which does not interfere with the detection of H2O2. Finally, the addition of H2O2 on MUA/Au electrode was observed which has no effect on amperometric current.  相似文献   

6.
Gold nanoparticles have been electrodeposited on an electrode through electrogeneration at an ITO|AuCl4? solution in an ionic liquid|aqueous electrolyte three-phase junction. The electrodeposition was carried out by inverted double-pulse potential chronoamperometry. The direct reduction of AuCl4? ions at the electrode is followed by a counterion transfer through the liquid|liquid interface. Contrary to the electrodeposition from a single ionic liquid phase, scanning electron microscopy reveals that the shape of the resulting nanoparticles is highly angular and well-developed with a diameter of 110 ± 30 nm. Catalytic oxidation of glucose on the modified electrode is demonstrated.  相似文献   

7.
A polyaniline-modified screen-printed carbon electrode (PANI/SPCE) was prepared by electropolymerization for the construction of a novel disposable cell impedance sensor. The conductive polymer improved greatly the electron transfer of SPCE and was very effective for cell immobilization. The adhesion of cells increased the electron transfer resistance (Ret) of redox probe on the PANI/SPCE surface, producing an impedance sensor for K562 leukaemia cells with a semilogarithm linear range from 104 to 107 cells ml−1 and a limit of detection of 8.32 × 103 cells ml−1 at 10σ. The proliferation of cells on the conductive polymer increased the Ret, leading to a novel way to monitor the growth process of cells on the PANI/SPCE. The electrochemical monitoring indicated K562 leukaemia cells cultured in vitro on the PANI surface were viable for 60 h, consistent with the analysis from microscopic imaging and MTT assay. This method for monitoring the surface proliferation and detecting the number of viable cells was simple, low-cost and disposable, thus providing a convenient avenue for electrochemical study of cell immobilization, adhesion, proliferation and apoptosis.  相似文献   

8.
We report the electrochemical performance of carbon-coated TiO2 nanobarbed fibers (TiO2@C NBFs) as anode material for lithium-ion batteries. The TiO2@C NBFs are composed of TiO2 nanorods grown on TiO2 nanofibers as a core, coated with a carbon shell. These nanostructures form a conductive network showing high capacity and C-rate performance due to fast lithium-ion diffusion and effective electron transfer. The TiO2@C NBFs show a specific reversible capacity of approximately 170 mAh g 1 after 200 cycles at a 0.5 A g 1 current density, and exhibit a discharge rate capability of 4 A g 1 while retaining a capacity of about 70 mAh g 1. The uniformly coated amorphous carbon layer plays an important role to improve the electrical conductivity during the lithiation–delithiation process.  相似文献   

9.
The direct electron transfer between hemoglobin (Hb) and the underlying glassy carbon electrode (GCE) can be readily achieved via a high biocompatible composite system based on biopolymer chitosan (CHT) and inorganic CaCO3 nanoparticles (nano-CaCO3). Cyclic voltammetry of Hb-CHT/nano-CaCO3/GCE showed a pair of stable and quasi-reversible peaks for HbFe(III)/Fe(II) redox couple in pH 7.0 buffer. The electrochemical reaction of Hb immobilized in CHT/nano-CaCO3 composite matrix exhibited a surface-controlled process accompanied by electron and proton transfer. The electron transfer rate constant was estimated to be 1.8 s−1. This modified electrode showed a high thermal stability up to 60 °C. The apparent Michaelis–Menten constant was calculated to be 7.5 × 10−4 M, indicating a high catalytic activity of the immobilized Hb toward H2O2. The interaction between Hb and this nano-hybrid material was also investigated using FT-IR and UV–vis spectroscopy, indicating that Hb retained its native structure in this hybrid matrix.  相似文献   

10.
(Solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) for the binary systems: {ionic liquid (IL) N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BM4Py][TOS], or N-butyl-3-methylpyridinium tosylate [BM3Py][TOS], or N-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], or N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide [BM4Py][NTf2], or 1,4-dimethylpyridinium tosylate [M1,4Py][TOS], or 2,4,6-collidine tosylate [M2,4,6Py][TOS], or 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], or 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-hexyl-3-methylimidazolium thiocyanate [HMIM][SCN], or triethylsulphonium bis(trifluoromethylsulfonyl)imide [Et3S][NTf2] + thiophene} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 390) K. In the case of systems (pyridinium IL, or sulphonium IL + thiophene) the mutual immiscibility with an upper critical solution temperature (UCST) was detected at the very narrow and low mole fraction of the IL. For the binary systems containing (imidazolium thiocyanate IL + thiophene), the mutual immiscibility with the lower critical solution temperature (LCST) was detected at the higher mole fraction range of the IL. The basic thermal properties of the pure ILs, i.e. melting and glass-transition temperatures as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). The well-known NRTL equation has been used to correlate experimental SLE/LLE data sets.  相似文献   

11.
Photocurrent was observed upon monochromatic illumination of an ITO electrode coated with a TiO2 nanocrystalline mesoporous membrane with carotenoid 8′-apo-β-caroten-8′-oic acid (ACOA) deposited as a sensitizer (illuminated area 0.25 cm2) and immersed in an aqueous 10 mM hydroquinone (H2Q), 0.1 M NaH2PO4 solution (pH = 7.4) purged with argon, using a platinum flag counter electrode (area 3.3 cm2) and a SCE reference electrode. The carotenoid-sensitized short-circuit photocurrent reached 4.6 μA/cm2 upon a 40 μW/cm2 incident light beam at 426 nm, with an IPCE (%, incident monochromatic photon-to-photocurrent conversion efficiency) as high as 34%. The short-circuit photocurrent was stable during 1 h of continuous illumination with only a 10% decrease. An open-circuit voltage of 0.15 V was obtained (upon 426 nm, 40 μW/cm2 illumination) which remained at a constant value for hours. The observed open-circuit voltage is close to the theoretical value (0.22 V) expected in such a system. The action spectrum resembled the absorption spectrum of ACOA bound on the TiO2 membrane with a maximum near 426 nm. No decay of the ACOA on the TiO2 surface was observed after 12 h, presumably because of rapid regeneration of ACOA from ACOA+ at the surface by electron transfer from H2Q.  相似文献   

12.
Robust molecular bioelectronic devices require a programmable and efficient electronic communication between biological molecules and electrodes. With proteins it is often compromised by their uncontrollable assembly on electrodes that does not provide neither uniform nor efficient electron flow between proteins and electrodes. Here, horseradish peroxidase reconstituted onto C11-alkanethiol-conjugated hemin and self-assembled onto the gold nanoparticle (NP)-modified electrodes via the exposed alkanethiol tail exhibits enhanced electron transfer (ET), proceeding via the gold NP relay with the ET rate constant approaching 115 s 1 vs. 14 s 1 shown on bare gold, by this offering an advanced controllable design of interfaces for bioelectronic devices based on heme-containing enzymes with a non-covalently bound heme.  相似文献   

13.
The hydrogen production by water electrolysis was tested with different electrocatalysts (molybdenum, nickel, iron alloys containing chromium, manganese and nickel) using aqueous solutions of ionic liquid (IL) like 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4). The hydrogen evolution reaction (HER) was performed at room temperature in a potential of −1.7 V (PtQRE). A Hoffman cell apparatus was used to water electrolysis with current density values, j, between 14.6 mA cm−2 (for Ni electrode) and 77.5 mA cm−2 (for Mo electrode). The system efficiency was very high for all electrocatalysts tested, between 97.0% and 99.2%. The energy activation values of HER was determined in an aqueous solution of BMI.BF4 10 vol.%, using platinum (23.40 kJ mol−1) and Mo (9.22 kJ mol−1) as electrocatalysts. The results show that the hydrogen production in IL electrolyte can be carried out with cheap material at room temperature, which makes this method economically attractive.  相似文献   

14.
A novel amperometric glucose biosensor was developed by entrapping glucose oxidase (GOD) in chitosan (CS) composite doped with ferrocene monocarboxylic acid-modified magnetic core-shell Fe3O4@SiO2 nanoparticles (FMC-AFSNPs). It is shown that the obtained magnetic bio-nanoparticles attached to the surface of a carbon paste electrode (CPE) with the employment of a permanent magnet showed excellent electrochemical characteristics and at the same time acted as mediator to transfer electrons between the enzyme and the electrode. Under optimal conditions, this biosensor was able to detect glucose in the linear range from 1.0 × 10−5 to 4.0 × 10−3 M with a detection limit of 3.2 μM (S/N = 3). This immobilization approach effectively improved the stability of the electron transfer mediator and is promising for construction of biosensor and bioelectronic devices.  相似文献   

15.
We investigated the direct electrochemistry of glucose oxidase (GOx) at gelatin-multiwalled carbon nanotube (GCNT) modified glassy carbon electrode (GCE). GOx was covalently immobilized onto GCNT modified GCE through the well known glutaraldehyde (GAD) chemistry. The immobilized GOx showed a pair of well-defined reversible redox peaks with a formal potential (E0′) of ? 0.40 V and a peak to peak separation (ΔEp) of 47 mV. The surface coverage concentration (Г) of GOx in GCNT/GOx/GAD composite film modified GCE was 3.88 × 10? 9 mol cm? 2 which indicates the high enzyme loading. The electron transfer rate constant (ks) of GOx immobilized onto GCNT was 1.08 s? 1 which validates a rapid electron transfer processes. The composite film shows linear response towards 6.30 to 20.09 mM glucose. We observed a good sensitivity of 2.47 μA mM?1 cm? 2 for glucose at the composite film. The fabricated biosensor displayed two weeks stability. Moreover, it shows no response to 0.5 mM of ascorbic acid (AA), uric acid (UA), acetaminophen (AP), pyruvate (PA) and lactate (LA) which shows its potential application in the determination of glucose from human serum samples. The composite film exhibits excellent recovery for glucose in human serum at physiological pH with good practical applicability.  相似文献   

16.
This study demonstrates a new kind of single-walled carbon nanotubes (SWNT)-based compartment-less glucose/O2 biofuel cell (BFC) with glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) as the anodic and cathodic biocatalysts, respectively, and with poly(brilliant creysl blue) (BCB) adsorbed onto SWNT nanocomposite as the electrocatalyst for the oxidation of NADH. The prepared GDH-polyBCB-SWNT bioanode exhibits an excellent electrocatalytic activity toward the oxidation of glucose biofuel; in 0.10 M phosphate buffer containing 20 mM NAD+ and 100 mM glucose, the oxidation of glucose commences at −0.25 V and the current reaches its maximum of 310 μA/cm2 at −0.05 V vs. Ag/AgCl. At the BOD-SWNT biocathode, a high potential output is achieved for the reduction of O2 due to the direct electron transfer property of BOD at the SWNTs. In 0.10 M phosphate buffer, the electrocatalytic reduction of O2 is observed at a high potential of 0.53 V vs. Ag/AgCl with an electrocatalytic current plateau of ca. 28 μA/cm2 at 0.45 V under ambient air and ca. 102 μA/cm2 under O2-saturated atmosphere. In 0.10 M phosphate buffer containing 10 mM NAD+ and 40 mM glucose under O2-saturated atmosphere, the power density of the assembled SWNT-based glucose/O2 BFC reaches 53.9 μW/cm2 at 0.50 V. The performance and the stability of the glucose/O2 BFC are also evaluated in serum. This study could offer a new route to the development of new kinds of enzymatic BFCs with a high performance and provide useful information on future studies on the enzymatic BFCs as in vivo power sources.  相似文献   

17.
The heterometallic photoinitiated electron collector [{(phen)2Ru(dpp)}2RhBr2](PF6)5 (phen = 1,10-phenanthroline, dpp = 2,3-bis(2-pyridyl)pyrazine) has been synthesized and studied by spectroscopic, photophysical, electrochemical, and photochemical techniques. Substitution of chloride with bromide in the previously reported [{(phen)2Ru(dpp)}2RhCl2](PF6)5 complex presents a new photoinitiated electron collector which can assist in understanding the functioning of our supramolecular systems [{(TL)2Ru(BL)}2RhX2](PF6)5 (TL = terminal ligand, BL = bridging ligand, X = halide) in the photoinitiated electron collection and generation of hydrogen through the reduction of water and a detailed comparison is presented. Both the bromide and chloride analogues of these supramolecular complexes contain low energy, emissive metal-to-ligand charge transfer (3MLCT) excited states that populate lower lying metal-to-metal charge transfer (3MMCT) excited states. The electrochemistry of these complexes showed an impact on the reduction of the central RhIII upon halide substitution with the bromide analogue [(phen)2Ru(dpp)}2RhBr2](PF6)5 having a slightly lower reduction potential than the corresponding chloride counterpart. The more positive reduction of RhIII to generate the RhI species in the bromide analogue impacts the photocatalytic properties upon photolysis in the presence of a sacrificial electron donor. The trimetallic complex [{(phen)2Ru(dpp)}2RhBr2](PF6)5 generates hydrogen through the reduction of water with higher yields than the chloride [{(phen)2Ru(dpp)}2RhCl2](PF6)5 analogue under the same conditions. Despite the longer lived 3MLCT state of both [(TL)2Ru(dpp)]2+ and [{(TL)2Ru}2(dpp)]4+ when TL = phen vs. bpy (bpy = 2,2′-bipyridine), the phen trimetallics with X = Cl? or Br? do not display longer lived 3MLCT states and show lower H2 yields than the analogous bpy trimetallic systems.  相似文献   

18.
Isobaric T, x, y data were reported for ternary systems of {water + 2-methyl-2-propanol (tert-butyl alcohol, TBA) + ionic liquid (IL)} at p = 100 kPa. When the mole fraction of TBA on IL-free basis was fixed at 0.95, measurements were performed at IL mass fractions from 0.6 down to 0.05, in a way of repeated synthesis. The vapor-phase compositions were obtained by analytical methods and the liquid-phase compositions were calculated with the aid of mass balances. Activity coefficients of water and TBA were obtained without the need of a thermodynamic model of the liquid-phase. Six ILs, composed of an anion chosen from [OAc]? or [Cl]?, and a cation from [emim]+, or [bmim]+, or [hmim]+, were studied. Relative volatility and activity coefficients were presented in relation with the IL mole fraction, showing the effect of the ILs on a molar basis. The effect of the ILs on relative volatility of TBA to water was depicted by the effect of anions and cations on, respectively, the activity coefficients of water and TBA. The results indicated that, among the six ILs studied, [emim][Cl] has the most significant effect on enhancement of the relative volatility, which reaches a value of 7.2 at an IL mass fraction of 0.58. Another IL, [emim][OAc], has also significant effect, with an appreciable value of 5.2 for the relative volatility when the IL mass fraction is 0.6. Considering the relatively low viscosity and melting point of [emim][OAc], it might be a favorable candidate as solvent for the separation of water and TBA by extractive distillation. Simultaneous correlation by the NRTL model was presented for both systems of (water + ethanol + IL) and (water + TBA + IL), using consistent binary parameters for water and IL.  相似文献   

19.
This paper described a new approach for the preconcentration of lead (Pb2+) by temperature controlled ionic liquid-dispersive liquid phase microextraction (TIL-DLME) prior to analyzing by flame atomic absorption spectrometry (FAAS). An ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] was used as an extractant solvent. The Pb2+ was complexed with ammonium pyrrolidinedithiocarbamate (APDC) and then entered into the infinite IL drops at high temperature (> 70 °C). Important variables affecting the microextraction efficiency such as pH, ligand concentration, amount of IL, temperature and incubation time were investigated. The results showed that the coexistent ions had no obvious negative effect on the determination of Pb2+. In the optimum experimental conditions, the limit of detection (LOD) and the enhancement factor (EF) were 0.13 μg L? 1 and 93, respectively. The relative standard deviation (RSD) of 10 μg L? 1 Pb2+ was 4.3%. The developed method was validated by determining Pb2+ in certified reference material (CRM) and the results showed that the determined values of Pb2+ were in good agreement with the certified value. The proposed method was applied satisfactorily for the preconcentration of Pb2+ in acid digested blood samples of children with different respiratory disorders.  相似文献   

20.
Gold nanorods (GNRs) were synthesized by a seed–mediated growth approach followed by TEOS polymerization leading to the formation of silica layer surrounding the gold nanorod core. TEM images showed that the silica-coated gold nanorods (GNRs@SiO2) were dispersed with an average aspect ratio of 3.1 for the GNRs cores and a uniform thickness of the silica shell. The core/shell nanocomposites were further used as efficient supports for the immobilization of hemoglobin (Hb) to fabricate a novel biosensor. The immobilized Hb showed an enhanced electron transfer for its heme Fe(III) to Fe(II) redox couple. This biosensor showed an excellent bioelectrocatalytic activity towards H2O2 with a linear range from 8.0 × 10−7 to 6.1 × 10−5 M, and the detection limit was 6.0 × 10−8 M at 3σ. The apparent Michaelis–Menten constant of the immobilized hemoglobin was calculated to be 0.13 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号