首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A kind of time-limited pest control of a Lotka–Volterra model with impulsive harvest, described by the initial and boundary value problem of impulsive differential equation, is presented. The aim of pest control can be achieved if the model has a solution, otherwise the aim cannot be achieved. By the comparison principle, the conditions under which the model has a solution are found by a series of the upper solutions and the conditions under which the model has no solution are also given by a series of the lower solutions. Furthermore, if the other parameters are given, the times of harvesting pest in the given time is estimated. The theoretical results and the numerical simulations show that the density of the natural enemy will decrease when the pest decreases although the control measures to the pest do not directly affect the natural enemy. Finally, some discussions are given.  相似文献   

2.
Two kinds of time-limited pest control models of single-pest with stage-structure, which can be described by the boundary value problem of ordinary differential equation and impulsive differential equation, are presented according to the ways of artificial control (continuous control and impulsive control). The conditions under which the corresponding model has a solution are given. If the model has a solution, the corresponding aim of pest control can be achieved. The theoretical results show that both the mature and the immature pest should be controlled synchronously, otherwise the aims of pest control can not be achieved in a finite time. Finally, some discussions and numerical simulations show that the impulsive control is more practical than the continuous control.  相似文献   

3.
In this paper, a mathematical model with impulsive state feedback control is proposed for turbidostat system. The sufficient conditions of existence of positive order one periodic solution are obtained by using the existence criteria of periodic solution of a general planar impulsive autonomous system. It is shown that the system either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentration of microorganism and substrate. By investigating the periodic solution, the period and the initial point of the periodic solution are given. The results show that turbidostat with impulsive state feedback control tends to an order one periodic solution.  相似文献   

4.
In this paper, a chemostat model with variable yield and impulsive state feedback control is considered. We obtain sufficient conditions of the globally asymptotical stability of the system without impulsive state feedback control. We also obtain that the system with impulsive state feedback control has periodic solution of order one. Sufficient conditions for existence and stability of periodic solution of order one are given. In some cases, it is possible that the system exists periodic solution of order two. Our results show that the control measure is effective and reliable.  相似文献   

5.
研究具有状态反馈脉冲控制的种群互惠动力系统.首先利用微分方程几何理论和后继函数的方法得到一般系统阶1周期解的存在条件;然后研究了一类特殊系统,说明了该系统在一定条件下存在唯一的阶1周期解,并且给出了该阶1周期解轨道渐近稳定的条什,此外还探讨了该系统阶2周期解的存在性问题.  相似文献   

6.
In this paper, we study dynamics of a prey-predator system under the impulsive control. Sufficient conditions of the existence and the stability of semi-trivial periodic solutions are obtained by using the analogue of the Poincaré criterion. It is shown that the positive periodic solution bifurcates from the semi-trivial periodic solution through a transcritical bifurcation. A strategy of impulsive state feedback control is suggested to ensure the persistence of two species. Furthermore, a steady positive period-2 solution bifurcates from the positive periodic solution by the flip bifurcation, and the chaotic solution is generated via a cascade of flip bifurcations. Numerical simulations are also illustrated which agree well with our theoretical analysis.  相似文献   

7.
The agricultural pests can be controlled effectively by simultaneous use (i.e., hybrid approach) of biological and chemical control methods. Also, many insect natural enemies have two major life stages, immature and mature. According to this biological background, in this paper, we propose a three tropic level plant–pest–natural enemy food chain model with stage structure in natural enemy. Moreover, impulsive releasing of natural enemies and harvesting of pests are also considered. We obtain that the system has two types of periodic solutions: plant–pest-extinction and pest-extinction using stroboscopic maps. The local stability for both periodic solutions is studied using the Floquet theory of the impulsive equation and small amplitude perturbation techniques. The sufficient conditions for the global attractivity of a pest-extinction periodic solution are determined by the comparison technique of impulsive differential equations. We analyze that the global attractivity of a pest-extinction periodic solution and permanence of the system are evidenced by a threshold limit of an impulsive period depending on pulse releasing and harvesting amounts. Finally, numerical simulations are given in support of validation of the theoretical findings.  相似文献   

8.
利用脉冲微分方程的对比定理以及李雅普诺夫函数法,我们研究了一类具有脉冲效应的浮游生物模型的持久性以及概周期解.文中所得结论改进了以往的研究成果.文中所用的研究方法可以用来研究其他带有脉冲的生物数学模型的持久性以及概周期解.最后,我们总结阐述了脉冲如何影响模型的持久性,概周期解以及一致渐进稳定性.  相似文献   

9.
According to the initial density of a single species with Allee effect and corresponding management strategy, three kinds of mathematical models are presented to describe the evolutionary process of the species by impulsive differential equations. When the initial density of the species is larger than economic injury level (EIL) (or economical threshold, ET), impulsive harvest control is considered in a finite time to decrease the population of the species. The feasibility of the impulsive harvest control in a finite time is given by the existence of solution of the model with initial and boundary value problem. When the initial density of the species is less than EIL (or ET), the model with state feedback control is formulated according to the state of the species. The existence and stability of periodic solution of the model with state feedback control are discussed. When the initial density of the species is less than the Allee threshold and the species tends to extinction, the model with impulsive release at fixed moments is presented to study the restoration of the species. The conditions for the feasibility of periodic restoration of the species are given. Finally, some discussions are given.  相似文献   

10.
11.
This paper is motivated from some recent papers treating the problem of the existence of a solution for impulsive differential equations with fractional derivative. We firstly show that the formula of solutions in cited papers are incorrect. Secondly, we reconsider a class of impulsive fractional differential equations and introduce a correct formula of solutions for a impulsive Cauchy problem with Caputo fractional derivative. Further, some sufficient conditions for existence of the solutions are established by applying fixed point methods. Some examples are given to illustrate the results.  相似文献   

12.
具有脉冲效应和综合害虫控制的捕食系统   总被引:8,自引:1,他引:7  
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统. 系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件.  相似文献   

13.
In this paper, we investigate the population dynamics described by the theta logistic model with periodic impulsive harvesting and by-catch mortality. We examine the existence and stability of two positive periodic solutions by using qualitative methods and cobwebs. Then the sufficient conditions under which the unique positive periodic solution exists and is semi-stable are established, and qualifications for the solutions approach zero are also obtained. Further, choosing the maximum sustainable yield as the management objective, we investigate the optimal harvesting policy for the theta logistic model with periodic impulsive harvesting. Moreover the corresponding theta logistic difference equation is considered subject to the impulsive perturbation, and the dynamics which is parallel to that for the differential equation is examined. The main results extend and generalize the classical results for populations described by the autonomous logistic equation in renewable resources management.  相似文献   

14.
基于害虫的生物控制策略,分别利用Floquet乘子理论及脉冲比较定理,研究了一类具有脉冲效应的一个捕食者-两个食饵模型并进行了分析,得到害虫根除周期解的渐近稳定与系统持续生存条件.  相似文献   

15.
In this paper, we consider a nonautonomous impulsive plankton model with mutual help of preys. Sufficient conditions ensuring permanence and global attractivity of the model are established by the relation between solutions of impulsive system and corresponding nonimpulsive system. Also, we propose the conditions for which the species of system are driven to extinction. Numerical simulations are given to verify the main results.  相似文献   

16.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

17.
Lur''''e系统稳定与同步的脉冲控制   总被引:2,自引:0,他引:2  
提出了Lur’e系统的脉冲控制系统,利用关于脉冲系统稳定的几个定理,得到了具变化的脉冲区间的Lur'e系统镇定的充分条件;并且给出了Lur'e系统的适当参数与脉冲控制律,使得两个Lur'e系统脉冲同步。最后,给出数值例子说明本结论的有效性。  相似文献   

18.
The nonlinear impulsive differential equations with fixed moments of impulsive perturbation are the main object of investigation in this paper. Sufficient conditions for these types of equations are obtained, under which their solutions are continuously dependent and differentiable with respect to the initial conditions and the impulsive perturbations. The results are applied to a mathematical model of population dynamics.  相似文献   

19.
The dynamics of a predator–prey model with impulsive state feedback control, which is described by an autonomous system with impulses, is studied. The sufficient conditions of existence and stability of semi-trivial solution and positive period-1 solution are obtained by using the Poincaré map and analogue of the Poincaré criterion. The qualitative analysis shows that the positive period-1 solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, and it is shown that a chaotic solution is generated via a cascade of period-doubling bifurcations.  相似文献   

20.
In this paper, we investigate a classical periodic Lotka–Volterra competing system with impulsive perturbations. The conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are given by applying Floquet theory of linear periodic impulsive equation, and we also give the conditions for the global stability of these solutions as a consequence of some abstract monotone iterative schemes introduced in this paper, which will be also used to get some sufficient conditions for persistence. By using the method of coincidence degree, the conditions for the existence of at least one strictly positive (componentwise) periodic solution are derived. The theoretical results are confirmed by a specific example and numerical simulations. It shows that the dynamic behaviors of the system we consider are quite different from the corresponding system without pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号