首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a class of bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time delay in the leakage term, discrete and unbounded distributed delays is formulated to study the global asymptotic stability. This approach is based on the Lyapunov–Krasovskii functional with free-weighting matrices. Using linear matrix inequality (LMI), a new set of stability criteria for BAM FCNNs with time delay in the leakage term, discrete and unbounded distributed delays is obtained. Also, the stability behavior of BAM FCNNs is very sensitive to the time delay in the leakage term. In the absence of a leakage term, a new stability criteria is also derived by employing a Lyapunov–Krasovskii functional and using the LMI approach. Our results establish a new set of stability criteria for BAM FCNNs with discrete and unbounded distributed delays. Numerical examples are provided to illustrate the effectiveness of the developed techniques.  相似文献   

2.
In this paper, the problem of passivity analysis is investigated for neutral type neural networks with Markovian jumping parameters and time delay in the leakage term. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. By constructing proper Lyapunov–Krasovskii functional, new delay-dependent passivity conditions are derived in terms of linear matrix inequalities (LMIs). Moreover, it is well known that the passivity behavior of neural networks is very sensitive to the time delay in the leakage term. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed method.  相似文献   

3.
Separate studies have been published on the stability of fuzzy cellular neural networks with time delay in the leakage term and synchronization issue of coupled chaotic neural networks with stochastic perturbation and reaction-diffusion effects. However, there have not been studies that integrate the two fields. Motivated by the achievements from both fields, this paper considers the exponential synchronization problem of coupled chaotic fuzzy cellular neural networks with stochastic noise perturbation, time delay in the leakage term and reaction-diffusion effects using linear feedback control. Lyapunov stability theory combining with stochastic analysis approaches are employed to derive sufficient criteria ensuring the coupled chaotic fuzzy neural networks to be exponentially synchronized. This paper also presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed scheme.  相似文献   

4.
This paper considers general impulsive delay differential equations. By utilizing a non-classical approach, the theory of existence and uniqueness of solutions are developed. Criteria on boundedness of solutions are also established through the use of Lyapunov functionals.  相似文献   

5.
This paper is concerned with the stability and periodicity for a class of impulsive neural networks with delays. By means of the Fixed point theory, Lyapunov functional and analysis technique, some sufficient conditions of exponential stability and periodicity are obtained. We can see that impulses do contribution to the stability and periodicity. An example is given to demonstrate the effectiveness of the obtained results.  相似文献   

6.
The robust exponential stability problem in this paper for discrete-time switched Hopfield neural networks with time delay and uncertainty is considered. Firstly, the mathematical model of the system is established. Then by constructing a new Lyapunov–Krasovskii functional, some new delay-dependent criteria are developed, which guarantee the robust exponential stability of discrete-time switched Hopfield neural networks. A numerical example is provided to demonstrate the potential and effectiveness of the results obtained.  相似文献   

7.
This paper investigates the problem of exponential stability and periodicity for a class of delayed cellular neural networks (DCNN’s). By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via constructing Lyapunov functional. Those conditions suitable are associated with some initial value and are represented by some blocks of the interconnection matrix. Two examples are discussed to illustrate the main results.  相似文献   

8.
In this paper, the robust global exponential stability is investigated for the discrete-time recurrent neural networks (RNNs) with time-varying interval delay. By choosing an augmented Lyapunov–Krasovskii functional, delay-dependent results guaranteeing the global exponential stability and the robust exponential stability of the concerned neural network are obtained. The results are shown to be a generalization of some previous results, and less conservative than the existing works. Two numerical examples are given to demonstrate the applicability of the proposed method.  相似文献   

9.
The purpose of this paper is to investigate the robust exponential stability of discrete‐time uncertain impulsive neural networks with time‐varying delay. By using Lyapunov functions together with Razumikhin technique, some new robust exponential stability criteria are presented. The obtained results show that the robust stability can be retained under certain impulsive perturbations for the neural network, which has the robust stability property. The obtained results also show that impulses can robustly stabilize the neural network, which does not have the robust stability property. Some examples, together with their simulations, are also given to show the effectiveness and the advantage of the presented results. It should be noted that the impulsive robust exponential stabilization result for discrete‐time neural network with time‐varying delay is given for the first time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we consider semilinear differential systems with random impulses. We study the existence and uniqueness of the solutions by relaxing the linear growth conditions, sufficient conditions for stability through continuous dependence on initial conditions and the exponential stability of this system have been established.  相似文献   

11.
In this paper, a system of nonlinear impulsive partial differential equations with delay is investigated by the method of upper–lower solutions. The existence-uniqueness result of this system and the comparison principle of the corresponding equations are obtained. An application is given to some model problems in ecology.  相似文献   

12.
In this paper, we discuss local and global existence and uniqueness results for first order impulsive functional differential equations with multiple delay. We shall rely on a nonlinear alternative of Leray–Schauder. For the global existence and uniqueness we apply a recent nonlinear alternative of Leray–Schauder type in Fréchet spaces, due to M. Frigon and A. Granas [Résultats de type Leray–Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec 22 (2) (1998) 161–168]. The goal of this paper is to extend the problems considered by A. Ouahab [Local and global existence and uniqueness results for impulsive differential equations with multiple delay, J. Math. Anal. Appl. 323 (2006) 456–472].  相似文献   

13.
In this paper, we study the exponential synchronization problem of a class of chaotic delayed neural networks with impulsive and stochastic perturbations. The involved time delays include time-varying delays and unbounded distributed delays. Employing the method of impulsive delay differential inequality, several new sufficient conditions ensuring the exponential synchronization are obtained, which can be easily checked by LMI Control Toolbox in Matlab. Compared with the previous methods, our method does not resort to complicated Lyapunov–Krasovkii, and the results derived are independent of the time-varying delays and do not require the differentiability of delay functions and the monotony of the activation functions. Finally, a numerical example and its simulation is given to show the effectiveness of the obtained results in this paper.  相似文献   

14.
In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of Hopfield neural networks with delays and impulsive perturbation. Some new stability criteria for such system are derived by using the Lyapunov functional method and the linear matrix inequality approach. The results are related to the size of delays and impulses. Our results are less restrictive and conservative than that given in some earlier references. Finally, two numerical examples showing the effectiveness of the present criteria are given.  相似文献   

15.
Due to the heterogeneity of the electromagnetic field in neural networks, the diffusion phenomenon of electrons exists inevitably. In this paper, we investigate pattern formation in a reaction-diffusion neural network with leakage delay. The existence of Hopf bifurcation, as well as the necessary and sufficient conditions for Turing instability, are studied by analyzing the corresponding characteristic equation. Based on the multiple-scale analysis, amplitude equations of the model are derived, which determine the selection and competition of Turing patterns. Numerical simulations are carried out to show the possible patterns and how these patterns evolve. In some cases, the stability performance of Turing patterns is weakened by leakage delay and synaptic transmission delay.  相似文献   

16.
In this paper, by means of constructing the extended impulsive delayed Halanay inequality and by Lyapunov functional methods, we analyze the global exponential stability and global attractivity of impulsive Hopfield neural networks with time delays. Some new sufficient conditions ensuring exponential stability of the unique equilibrium point of impulsive Hopfield neural networks with time delays are obtained. Those conditions are more feasible than that given in the earlier references to some extent. Some numerical examples are also discussed in this work to illustrate the advantage of the results we obtained.  相似文献   

17.
In this paper, we deal with a class of BAM neural networks with distributed leakage delays on time scales. Some sufficient conditions which ensure the existence and exponential stability of almost periodic solutions for such class of BAM neural networks are obtained by applying the exponential dichotomy of linear differential equations, Lapunov functional method and contraction mapping principle. An example is given to illustrate the effectiveness of the theoretical predictions. The obtained results in this paper are completely new and complement the previously known publications.  相似文献   

18.
In this paper, a class of stochastic reaction-diffusion neural networks with time delays in the leakage terms is investigated. By using the Lyapunov functional method and linear matrix inequality (LMI) approach, sufficient conditions are derived to ensure the global asymptotic stability of an equilibrium point of the networks in the mean square. The results can be easily solved by MATLAB LMI toolbox. Finally, a numerical example is given to demonstrate the effectiveness and conservativeness of our theoretical results.  相似文献   

19.
Using M-matrix and topological degree tool, sufficient conditions are obtained for the existence, uniqueness and global exponential stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with distributed delays and subjected to impulsive state displacements at fixed instants of time by constructing a suitable Lyapunov functional. The results remove the usual assumptions that the boundedness, monotonicity, and differentiability of the activation functions. It is shown that in some cases, the stability criteria can be easily checked. Finally, an illustrative example is given to show the effectiveness of the presented criteria.  相似文献   

20.
It is known that the complete stability of cellular neural networks with delays is very important in applications such as processing of a moving image. In this work, we utilize the Lyapunov functional method to analyse complete stability of cellular neural networks with delay. Our result is an improvement on that in [P.P. Civalleri, M. Gilli, L. Pandolfi, On stability of cellular neural networks with delay, IEEE Trans. Circuits Syst. I 40 (1993) 157–165].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号