首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new ion-channel biosensor based on supported bilayer lipid membrane for direct and fast detection of Campylobacter species. The sensing element of a biosensor is composed of a stainless-steel working electrode, which is covered by artificial bilayer lipid membrane (BLM). Antibodies to bacteria embedded into the BLM are used as channel forming proteins. The biosensor has a strong signal amplification effect, which is defined as the total number of ions transported across the BLM. The total number of (univalent) ions flowing through the channels is 1010 ions s−1. The biosensor showed a very good sensitivity and selectivity to Campylobacter species.  相似文献   

2.
Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein’s productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.  相似文献   

3.
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin–β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt–Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt–Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt–Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt–Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore–antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression.  相似文献   

4.
In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10−1 genomic equivalent ml−1. An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device.  相似文献   

5.
A novel and facile approach of pathogenic bacteria detection, which utilizes fluorescent sensing and bacteria capture with Magnetic carbon dots (Mag-CDs), was proposed in this work. Magnetic nanoparticles were synthesized and then decorated with C-dots, and further functionalized with amine groups (chitosan). In this way, bacteria were strongly anchored on the hybrid material Mag-CDs for highly sensitive fluorescent detection. The Mag-CDs were characterized by UV–vis, FT-IR spectra, TEM images, XRD, and EDX. The characterizations validate the fabrication of amine-Mag-CDs and the promising applications of this material. Fluorescence spectroscope and MALDI-MS were used for the detection and identification of bacterial strains, respectively. The limit of detection for Staphylococcus aureus and Escherichia coli was found to be 3 × 102 and 3.5 × 102 cfu mL−1, respectively. With these encouraging results, it is expected that it would open revenues for promising applications of Mag-CDs nanomaterial.  相似文献   

6.
The detection of pathogens through alternative methodologies based on electrochemical biosensors is being studied. These devices exhibit remarkable properties, such as simplicity, specificity, and high sensitivity in monitoring pathogens. However, it is necessary to continue conducting studies that adequately improve these characteristics, especially the recognition molecule. This work aims to design and evaluate a new peptide, named PEPTIR-2.0, as a recognition molecule in electrochemical biosensors to detect E. coli O157:H7 in water. PEPTIR-2.0 was obtained from modifications of the PEPTIR-1.0 peptide sequence, which was previously reported and exhibited excellent properties for detecting and quantifying this pathogenic microorganism. PEPTIR-1.0 is a peptide analogous to the TIR (Translocated Intimin Receptor) protein capable of interacting with the Intimin outer membrane. The basis of this study was to obtain, by using bioinformatics tools, a molecule analogous to PEPTIR-1.0 that maintains its three-dimensional structure but increases the hydrophobic interactions between it and Intimin, since these intermolecular forces are the predominant ones. The designed PEPTIR-2.0 peptide was immobilized on screen-printed electrodes modified with gold nanoparticles. The detection capacity of E. coli O157:H7 in water was evaluated using electrochemical impedance spectroscopy in the presence of other microorganisms, such as P. aeruginosa, S. aureus, and non-pathogenic E. coli. The results showed that PEPTIR-2.0 confers remarkable specificity to the biosensor towards detecting E. coli, even higher than PEPTIR-1.0.  相似文献   

7.
There is growing interest in the detection of bacteria in consumables, for example, in the food and water sectors. In this study, the aim was to produce a polymer-based bacteria biosensor via ROMP (ring opening metathesis polymerization). In the first part of the study, block and random copolymers were synthesized, and their biocidal activities were tested on the glass surface. Interdigitated electrode arrays coated with the polymers possessing the highest activity were used to screen the affinity towards different bacterial strains by monitoring impedance variations in real-time. The polymer-coated electrode could detect gram-positive and gram-negative bacteria strains at a concentration of 107 cfu/mL. The results show that ROMP-based polymer offers bacterial detection and can be used in developing biosensor devices for efficiently detecting pathogenic bacteria.  相似文献   

8.
A benzoylferrocene (BFc) supported 3-sn-phosphatidylcholine (PC) film electrode was prepared by casting the solution of BFc and PC in chloroform onto the surface of platinum (Pt). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that BFc, retained in the biological membrane, acted as a shuttle for electron transfer across the supported bilayer lipid membranes (s-BLMs). Doping of BFc increased membrane conductivity, while electrochemical oxidation of BFc greatly changed the membrane conductivity, the membrane impedance characterized by charge transfer resistance (Rct) dramatically increased about 400 times (from 10.32 to 3919.67 kΩ). Interestingly, the electrochemical oxidized BFc buried in the membranes could be reduced by applying a low potential, and this led to recurrent of a conductive membrane. The conductivity of the s-BLMs could be controlled by the redox status of embedded BFc molecules. The approach provided a facile and novel way to electrochemically control the membrane conductance of s-BLMs by embedding BFc as a switchable redox mediator.  相似文献   

9.
Laccase in Cryptococcus neoformans is covalently linked to the carbohydrate moiety of the cell wall, which allows it to get access to the different substrates for catalyzing their oxidation and therefore plays a vital role in the virulence. The laccase gene (3.0 kb) from C. neoformans serotype D was amplified, cloned and sequenced for protein modeling, docking and simulation studies. The three dimensional homology models of laccase protein from C. neoformans and other pathogenic gut bacteria were docked with selected biomolecules like prostaglandins (PG), membrane phospholipids, neurotransmitters (serotonin) using GOLD software. The GOLDscore values of laccase from C. neoformans docked with prostaglandinH2 (59.76), prostaglandinG2 (59.45), prostaglandinE2 (60.99), phosphatidylinositol (54.95), phosphatidylcholine (46.26), phosphatidylserine (55.26), arachidonic acid (53.08) and serotonin (46.22) were similar to the laccase from enteropathogenic bacteria but showed a better binding affinity as compared to that of the non-pathogenic bacteria (e.g. Bacillus safensis, Bacillus pumilus and Bacillus subtilis). The RMSD of MD simulation study done for 25 ns using laccase protein from C. neoformans complexed with phosphatidylcholine was found to be highly stable, followed by the laccase-PGE2 and laccase-serotonin complexes. Furthermore, the binding free energy results were found to support the docking and MD simulation results. The present study implies that few candidate ligands can be intermediate substrate in the catalysis of microbial laccases, which can further play some crucial role in the cell signaling and pathogenesis of enteropathogenic gut micro flora and C. neoformans.  相似文献   

10.
Nanopores based on α-hemolysin and MspA represent attractive sensing platforms due to easy production and operation with relatively low background noise. Such characteristics make them highly favorable for sequencing nucleic acids. Artificial lipid bilayer membranes, also referred to as black lipid membranes, in conjunction with membrane nanopores, can be applied to both the detection and highly efficient sequencing of DNA on a single-molecule level. However, the inherently weak physical properties of the membrane have impeded progress in these areas. Current issues impeding the ultimate recognition of the artificial lipid bilayer as a viable platform for detection and sequencing of DNA include membrane stability, lifespan, and automation. This review (with 105 references) highlights attempts to improve the attributes of the artificial lipid bilayer membrane starting with an overview on the present state and limitations. The first main section covers lipid bilayer membranes (BLM) in general. The following section reviews the various kinds of lipid bilayer membrane platforms with subsections on polymer membranes, solid-supported membranes, hydrogel-encapsulated membranes, shippable and storable membrane platforms, and droplet interface bilayers. A further section covers engineered biological nanopore sensor applications using BLMs with subsections offering a comparative view of different DNA sequencing methods, a detailed look at DNA Sequencing by synthesis using alpha-hemolysin nanopores, sequencing by synthesis using the MspA nanopore and quadromer map, and on limitations of sequencing based on synthesis technology. We present an outlook at the end that discusses current research trends on single-molecule sequencing to highlight the significance of this technology and its potential in the medical and environmental fields.
Graphical abstract Sequencing by Synthesis, a novel method of sequencing DNA, uses the αHL biological nanopore and the artificial lipid bilayer membrane platform. Polymer tags attached to nucleotides bind to the polymerase-primer–template complex and are characterized by the nanopore upon release.
  相似文献   

11.
Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a–k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.  相似文献   

12.
Pseudomonas aeruginosa bacteria colonies have been analyzed by laser-induced breakdown spectroscopy using nanosecond laser pulses. LIBS spectra were obtained after transferring the bacteria from a nutrient-rich culture medium to a nutrient-free agar plate for laser ablation. To study the dependence of the LIBS spectrum on growth and environmental conditions, colonies were cultured on three different nutrient media: a trypticase soy agar (TSA) plate, a blood agar plate, and a medium chosen deliberately to induce bacteria membrane changes, a MacConkey agar plate containing bile salts. Nineteen atomic and ionic emission lines in the LIBS spectrum, which was dominated by inorganic elements such as calcium, magnesium and sodium, were used to identify and classify the bacteria. A discriminant function analysis was used to discriminate between the P. aeruginosa bacteria and two strains of E. coli: a non-pathogenic environmental strain and the pathogenic strain enterohemorrhagic E. coli 0157:H7 (EHEC). Nearly identical spectra were obtained from P. aeruginosa grown on the TSA plate and the blood agar plate, while the bacteria grown on the MacConkey plate exhibited easily distinguishable differences from the other two. All P. aeruginosa samples, independent of initial growth conditions, were readily discriminated from the two E. coli strains.  相似文献   

13.
The acquisition of multidrug resistance in bacteria has become a bigger threat of late, mainly due to the bacterial signaling phenomenon, quorum sensing (QS). QS, among a population of bacteria, initiates the formation of biofilms and offers myriad advantages to bacteria. Burgeoning antibiotic resistance in biofilm-producing bacteria has motivated efforts toward finding new alternatives to these traditional antimicrobials. In the present study, we report the increased solubility and additional quorum quenching as well as biofilm disruption activity of glyco-derivatives of monoterpenes (citral and citronellal). Glycomonoterpenes of citral and citronellal were synthesized via conjugation of the monoterpenes with glucose by the non-pathogenic yeast Candida bombicola (ATCC 22214). Structural elucidation of newly synthesized glycomonoterpenes showed that one synthesized using citronellal contains three major lactonic forms with molecular weight 492.43, 473.47, and 330.39 Da whereas the one produced using citral has an acidic form with molecular weight 389.33 and 346.23 Da. The glycomonoterpenes were able to individually inhibit QS, mediated through various medium-chain and long-chain N-acyl homoserine lactones (AHLs). These new compounds are interesting additions to the known range of quorum sensing inhibitors (QSIs) and could be further explored for potential clinical applications.  相似文献   

14.
The increase in β-lactam-resistant Gram-negative bacteria is a severe recurrent problem in the food industry for both producers and consumers. The development of nanotechnology and nanomaterial applications has transformed many features in food science. The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) and their mechanism of action on β-lactam-resistant Gram-negative food pathogens, such as Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Klebsiella pneumoniae, and Proteus mirabilis, are investigated in the present paper. The study results demonstrate that ZnO NPs possesses broad-spectrum action against these β-lactamase-producing strains. The minimal inhibitory and minimal bactericidal concentrations vary from 0.04 to 0.08 and 0.12 to 0.24 mg/mL, respectively. The ZnO NPs elevate the level of reactive oxygen species (ROS) and malondialdehyde in the bacterial cells as membrane lipid peroxidation. It has been confirmed from the transmission electron microscopy image of the treated bacterial cells that ZnO NPs diminish the permeable membrane, denature the intracellular proteins, cause DNA damage, and cause membrane leakage. Based on these findings, the action of ZnO NPs has been attributed to the fact that broad-spectrum antibacterial action against β-lactam-resistant Gram-negative food pathogens is mediated by Zn2+ ion-induced oxidative stress, actions via lipid peroxidation and membrane damage, subsequently resulting in depletion, leading to β-lactamase enzyme inhibition, intracellular protein inactivation, DNA damage, and eventually cell death. Based on the findings of the present study, ZnO NPs can be recommended as potent broad-spectrum antibacterial agents against β-lactam-resistant Gram-negative pathogenic strains.  相似文献   

15.
龚静鸣  林祥钦 《中国化学》2003,21(7):756-760
A synthetic cationic surfactant, 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-l,3-dioxane bromide (DTDB), was used to construct a supported bilayer lipid membrane (s-BLM) coatedon an underlying glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), small-angle X-ray diffraction (SAXD) and cyclic voltammetry were used to characterize the s-BLM. Both EIS and SAXD data indicated that the synthetic lipid exists as a well-oriented bilayer in the membrane.The voltammetric study showed that the lipid membrane can open ion channels in the presence of ClO4^- stimulant with Ru(bpy)3^2 as marker ions and give distinct channel currents.The channels can be dosed and open up again many times by removing or introducing ClO4^- anions.  相似文献   

16.
A Mycobacterium tuberculosis (MTB) bacilli are still widely spreading and have to be diagnosed fast and efficiently. Therefore, a new simple and rapid method was proposed to detect MTB by the impedance properties of MTB suspensions using interdigitated microelectrodes. As a result, MTB suspensions in deionized (DI) water with different cell concentrations generated different electrical impedance spectral responses. Whereas MTB suspensions in 0.9 wt. % NaCl solution did not produce any significant differences in the impedance spectra in response to different cell concentrations. In DI water suspensions, the impedance at 1 kHz decreased with increasing cell concentrations. The impedance of MTB suspension in DI water has been discussed; it was found to be resulted from the cell wall charges and release of ions from the cells. There was a linear relationship between the impedance and logarithmic value of the cell concentration in the cell concentration range of 102 to 108 cfu/mL, which can be expressed by the regression equation of Z (kΩ) =–456lnN (cfu/mL) + 9717 with R2 = 0.99. Detection limit was calculated as 104 cfu/mL, which is comparable with many label-free immunosensors for detecting pathogenic bacteria reported in the literature. This work demonstrated that MTB concentration can be determined through measuring the impedance of MTB suspensions in DI water. This new detection mechanism can be an alternative for current impedance methods available for detecting bacterial cells.  相似文献   

17.
A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM‐GUI Martini Maker for coarse‐grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user‐friendly manner. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
The potential use of the bilayer lipid membrane as an electrochemical sensor is discussed through a study of model systems known to cause increased membrane conductance. The limit of detection for amphotericin B, a molecule capable of forming membrane pores, is in the region of 1O-9 M. The current—time profile is discussed in terms of a mechanism which involves micelle formation in the aqueous and lipid phases. Unlike previous experiments, two current maxima with time are observed for valinomycin response (limit of detection 1O-11 M). The first transient signal is attributed to increased membrane permeability caused by a conformational change in valinomycin in the “surface” volume of the bilayer. Selective interactions at membranes and the nature of membrane responses are discussed in terms of analytical parameters.  相似文献   

19.
Transmembrane protein transporters possessing binding sites for ions, toxins, pharmaceutical drugs, and other molecules constitute excellent candidates for developing sensitive and selective biosensing devices. Their attractiveness for analytical purposes is enhanced by the intrinsic amplification capabilities shown when the binding event leads to major changes in the transportation of ions or molecules other than the analyte itself. The large-scale implementation of such transmembrane proteins in biosensing devices is limited by the difficulties encountered in inserting functional transporters into artificial bilayer lipid membranes and by the limitations in understanding and exploiting the changes induced by the interaction with the analyte for sensing purposes. Here, we show that lysenin, a pore-forming toxin extracted from earthworm Eisenia foetida, which inserts stable and large conductance channels into artificial bilayer lipid membranes, functions as a multivalent ion-sensing device. The analytical response consists of concentration and ionic-species-dependent macroscopic conductance inhibition most probably linked to a ligand-induced gating mechanism. Multivalent ion removal by chelation or precipitation restores, in most cases, the initial conductance and demonstrates reversibility. Changes in lipid bilayer membrane compositions leading to the absence of voltage-induced gating do not affect the analytical response to multivalent ions. Microscopic current analysis performed on individual lysenin channels in the presence of Cu2+ revealed complex open–closed transitions characterized by unstable intermediate sub-conducting states. Lysenin channels provide an analytical tool with a built-in sensing mechanism for inorganic and organic multivalent ions, and the excellent stability in an artificial environment recommend lysenin as a potential candidate for single-molecule detection and analysis.  相似文献   

20.
The applicability of 1-(4-N,N-dimethylaminophenylethynyl)pyrene (DMAPEPy), a pyrene derivative showing intramolecular charge transfer, as a prospective probe for lipid bilayer membranes has been evaluated. High sensitivity of DMAPEPy to solvent polarity and viscosity makes it to act both as a polarity-sensitive probe and as a fluorescence anisotropy probe. The molecule shows high partition efficiency towards bilayer membranes in both solid gel as well as in the liquid crystalline phases. The emission spectrum, quenching experiment and lifetime data suggest bimodal distribution of DMAPEPy in the bilayer. Using the solvent polarity scales the polarity parameters of the two locations in lipid bilayer have been estimated. In the bilayer environment it exhibits remarkable spectral changes with temperature. The thermotropic phase change of the bilayer is sensitively monitored by fluorescence intensity as well as fluorescence anisotropy parameters. DMAPEPy is also capable of sensing the changes induced by membrane modifiers like cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号