首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solving two-stage stochastic programming problems with level decomposition   总被引:1,自引:0,他引:1  
We propose a new variant of the two-stage recourse model. It can be used e.g., in managing resources in whose supply random interruptions may occur. Oil and natural gas are examples for such resources. Constraints in the resulting stochastic programming problems can be regarded as generalizations of integrated chance constraints. For the solution of such problems, we propose a new decomposition method that integrates a bundle-type convex programming method with the classic distribution approximation schemes. Feasibility and optimality issues are taken into consideration simultaneously, since we use a convex programming method suited for constrained optimization. This approach can also be applied to traditional two-stage problems whose recourse functions can be extended to the whole space in a computationally efficient way. Network recourse problems are an example for such problems. We report encouraging test results with the new method.   相似文献   

2.
We present geometric criteria for a feasible point that satisfies the Kuhn–Tucker conditions to be a global minimizer of mathematical programming problems with or without bounds on the variables. The criteria apply to multi-extremal programming problems which may have several local minimizers that are not global. We establish such criteria in terms of underestimators of the Lagrangian of the problem. The underestimators are required to satisfy certain geometric property such as the convexity (or a generalized convexity) property. We show that the biconjugate of the Lagrangian can be chosen as a convex underestimator whenever the biconjugate coincides with the Lagrangian at a point. We also show how suitable underestimators can be constructed for the Lagrangian in the case where the problem has bounds on the variables. Examples are given to illustrate our results.  相似文献   

3.
We consider linear programming problems with some equality constraints. For such problems, surrogate relaxation formulations relaxing equality constraints existwith zero primal-dual gap both when all variables are restricted to be integers and when no variable is required to be integer. However, for such surrogate formulations, when the variables are mixed-integer, the primal-dual gap may not be zero. We establish this latter result by a counterexample.  相似文献   

4.
Solution and analysis of mathematical programming problems may be simplified when these problems are symmetric under appropriate linear transformations. In particular, a knowledge of the symmetries may help decrease the problem dimension, reduce the size of the search space by means of linear cuts. While the previous studies of symmetries in the mathematical programming usually dealt with permutations of coordinates of the solutions space, the present paper considers a larger group of invertible linear transformations. We study a special case of the quadratic programming problem, where the objective function and constraints are given by quadratic forms. We formulate conditions, which allow us to transform the original problem to a new system of coordinates, such that the symmetries may be sought only among orthogonal transformations. In particular, these conditions are satisfied if the sum of all matrices of quadratic forms, involved in the constraints, is a positive definite matrix. We describe the structure and some useful properties of the group of symmetries of the problem. Besides that, the methods of detection of such symmetries are outlined for different special cases as well as for the general case.  相似文献   

5.
In order to study the behavior of interior-point methods on very large-scale linear programming problems, we consider the application of such methods to continuous semi-infinite linear programming problems in both primal and dual form. By considering different discretizations of such problems we are led to a certain invariance property for (finite-dimensional) interior-point methods. We find that while many methods are invariant, several, including all those with the currently best complexity bound, are not. We then devise natural extensions of invariant methods to the semi-infinite case. Our motivation comes from our belief that for a method to work well on large-scale linear programming problems, it should be effective on fine discretizations of a semi-infinite problem and it should have a natural extension to the limiting semi-infinite case.Research supported in part by NSF, AFORS and ONR through NSF grant DMS-8920550.  相似文献   

6.
In this article we develop a global optimization algorithm for quasiconvex programming where the objective function is a Lipschitz function which may have “flat parts”. We adapt the Extended Cutting Angle method to quasiconvex functions, which reduces significantly the number of iterations and objective function evaluations, and consequently the total computing time. Applications of such an algorithm to mathematical programming problems in which the objective function is derived from economic systems and location problems are described. Computational results are presented.  相似文献   

7.
Milan Hladík 《TOP》2011,19(1):93-106
We consider nonlinear programming problems the input data of which are not fixed, but vary in some real compact intervals. The aim of this paper is to determine bounds of the optimal values. We propose a general framework for solving such problems. Under some assumption, the exact lower and upper bounds are computable by using two non-interval optimization problems. While these two optimization problems are hard to solve in general, we show that for some particular subclasses they can be reduced to easy problems. Subclasses that are considered are convex quadratic programming and posynomial geometric programming.  相似文献   

8.
Stochastic programming approach to optimization under uncertainty   总被引:2,自引:0,他引:2  
In this paper we discuss computational complexity and risk averse approaches to two and multistage stochastic programming problems. We argue that two stage (say linear) stochastic programming problems can be solved with a reasonable accuracy by Monte Carlo sampling techniques while there are indications that complexity of multistage programs grows fast with increase of the number of stages. We discuss an extension of coherent risk measures to a multistage setting and, in particular, dynamic programming equations for such problems.   相似文献   

9.
Logic-based Benders decomposition can combine mixed integer programming and constraint programming to solve planning and scheduling problems much faster than either method alone. We find that a similar technique can be beneficial for solving pure scheduling problems as the problem size scales up. We solve single-facility non-preemptive scheduling problems with time windows and long time horizons. The Benders master problem assigns jobs to predefined segments of the time horizon, where the subproblem schedules them. In one version of the problem, jobs may not overlap the segment boundaries (which represent shutdown times, such as weekends), and in another version, there is no such restriction. The objective is to find feasible solutions, minimize makespan, or minimize total tardiness.  相似文献   

10.
Functional optimization problems can be solved analytically only if special assumptions are verified; otherwise, approximations are needed. The approximate method that we propose is based on two steps. First, the decision functions are constrained to take on the structure of linear combinations of basis functions containing free parameters to be optimized (hence, this step can be considered as an extension to the Ritz method, for which fixed basis functions are used). Then, the functional optimization problem can be approximated by nonlinear programming problems. Linear combinations of basis functions are called approximating networks when they benefit from suitable density properties. We term such networks nonlinear (linear) approximating networks if their basis functions contain (do not contain) free parameters. For certain classes of d-variable functions to be approximated, nonlinear approximating networks may require a number of parameters increasing moderately with d, whereas linear approximating networks may be ruled out by the curse of dimensionality. Since the cost functions of the resulting nonlinear programming problems include complex averaging operations, we minimize such functions by stochastic approximation algorithms. As important special cases, we consider stochastic optimal control and estimation problems. Numerical examples show the effectiveness of the method in solving optimization problems stated in high-dimensional settings, involving for instance several tens of state variables.  相似文献   

11.
In published works on fuzzy linear programming there are only few papers dealing with stability or sensitivity analysis in fuzzy mathematical programming. To the best of our knowledge, till now there is no method in the literature to deal with the sensitivity analysis of such fuzzy linear programming problems in which all the parameters are represented by LR flat fuzzy numbers. In this paper, a new method, named as Mehar’s method, is proposed for the same. To show the advantages of proposed method over existing methods, some fuzzy sensitivity analysis problems which may or may not be solved by the existing methods are solved by using the proposed method.  相似文献   

12.
Decomposition has proved to be one of the more effective tools for the solution of large-scale problems, especially those arising in stochastic programming. A decomposition method with wide applicability is Benders' decomposition, which has been applied to both stochastic programming as well as integer programming problems. However, this method of decomposition relies on convexity of the value function of linear programming subproblems. This paper is devoted to a class of problems in which the second-stage subproblem(s) may impose integer restrictions on some variables. The value function of such integer subproblem(s) is not convex, and new approaches must be designed. In this paper, we discuss alternative decomposition methods in which the second-stage integer subproblems are solved using branch-and-cut methods. One of the main advantages of our decomposition scheme is that Stochastic Mixed-Integer Programming (SMIP) problems can be solved by dividing a large problem into smaller MIP subproblems that can be solved in parallel. This paper lays the foundation for such decomposition methods for two-stage stochastic mixed-integer programs.  相似文献   

13.
Many problems arising in practical applications lead to linear programming problems. Hence, they are fundamentally tractable. Recent interior-point methods can exploit problem structure to solve such problems very efficiently. Infeasible interior-point predictor–corrector methods using floating-point arithmetic sometimes compute an approximate solution with duality gap less than a given tolerance even when the problem may not have a solution. We present an efficient verification method for solving linear programming problems which computes a guaranteed enclosure of the optimal solution and which verifies the existence of the solution within the computed interval.  相似文献   

14.
We present a theoretical framework, which is based upon notions of ordered hypergraphs and antichain polyhedra, and which is dedicated to the combinatorial analysis of preemptive scheduling problems submitted to parallelization constraints.This framework allows us to characterize specific partially ordered structures which are such that induced preemptive scheduling problems may be solved through linear programming. To prove that, in the general case, optimal preemptive schedules may be searched inside some connected subset of the vertex set of an Antichain Polyhedron.  相似文献   

15.
We present numerically reliable methods for the calculationof a search direction for use in sequential methods for solvingnonlinear programming problems. The methods presented are easyto adapt to such problems as locating directions of negativecurvature and linear infinite descent. Encouraging numericalresults are included.  相似文献   

16.
Multiplicative programming problems are global optimisation problems known to be NP-hard. In this paper we propose an objective space cut and bound algorithm for approximately solving convex multiplicative programming problems. This method is based on an objective space approximation algorithm for convex multi-objective programming problems. We show that this multi-objective optimisation algorithm can be changed into a cut and bound algorithm to solve convex multiplicative programming problems. We use an illustrative example to demonstrate the working of the algorithm. Computational experiments illustrate the superior performance of our algorithm compared to other methods from the literature.  相似文献   

17.
We consider linear programming approaches for support vector machines (SVM). The linear programming problems are introduced as an approximation of the quadratic programming problems commonly used in SVM. When we consider the kernel based nonlinear discriminators, the approximation can be viewed as kernel principle component analysis which generates an important subspace from the feature space characterized the kernel function. We show that any data points nonlinearly, and implicitly, projected into the feature space by kernel functions can be approximately expressed as points lying a low dimensional Euclidean space explicitly, which enables us to develop linear programming formulations for nonlinear discriminators. We also introduce linear programming formulations for multicategory classification problems. We show that the same maximal margin principle exploited in SVM can be involved into the linear programming formulations. Moreover, considering the low dimensional feature subspace extraction, we can generate nonlinear multicategory discriminators by solving linear programming problems.Numerical experiments on real world datasets are presented. We show that the fairly low dimensional feature subspace can achieve a reasonable accuracy, and that the linear programming formulations calculate discriminators efficiently. We also discuss a sampling strategy which might be crucial for huge datasets.  相似文献   

18.
We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.  相似文献   

19.
The Kuhn-Tucker Sufficiency Theorem states that a feasible point that satisfies the Kuhn-Tucker conditions is a global minimizer for a convex programming problem for which a local minimizer is global. In this paper, we present new Kuhn-Tucker sufficiency conditions for possibly multi-extremal nonconvex mathematical programming problems which may have many local minimizers that are not global. We derive the sufficiency conditions by first constructing weighted sum of square underestimators of the objective function and then by characterizing the global optimality of the underestimators. As a consequence, we derive easily verifiable Kuhn-Tucker sufficient conditions for general quadratic programming problems with equality and inequality constraints. Numerical examples are given to illustrate the significance of our criteria for multi-extremal problems.  相似文献   

20.
This paper evaluates an algorithm for solving network flow optimization problems with quadratic cost functions. Strategies for fast implementation are discussed and the results of extensive numerical tests are given. The performance of the algorithm measured by CPU time is compared with that of the convex simplex method specialized for quadratic network programming. Performance of the two methods is analysed with respect to network size and density, and other parameters of interest. The algorithm is shown to perform significantly better on the majority of problems. We also show how the algorithm may be used to solve non-linear convex network optimization problems by the use of sequential quadratic programming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号