首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A superconducting low-noise receiver has been developed for atmospheric observations in the 650-GHz band. A waveguide-type tunerless mixer mount was designed based on one for the 200-GHz band. Two niobium SIS (superconductor-insulator-superconductor) junctions were connected by a tuning inductance to cancel the junction capacitance. We designed the RnCj product to be 8 and the current density to be 5.5 kA/cm2. The measured receiver noise temperature in DSB was 126-259 K in the frequency range of 618-660 GHz at an IF of 5.2 GHz, and that in the IF band (5-7 GHz) was 126-167 K at 621 GHz. Direct detection measurements using a Fourier transform spectrometer (FTS) showed the frequency response of the SIS mixer to be in the range of about 500-700 GHz. The fractional bandwidth was about 14%. The SIS receiver will be installed in a balloon-borne limb-emission sounder that will be launched from Sanriku Balloon Center in Japan.  相似文献   

2.
We report the development of a low noise heterodyne receiver optimized for astronomical observations in the 650 GHz atmospheric window, and specifically for the CO(J=65) line at 691.5 GHz. The system is based on an open structure SIS heterodyne mixer pumped by a continuously tunable solid state oscillator. A niobium SIS junction double array is placed at the end of an integrated V-Antenna. For broad band impedance matching a combination of microstrip impedance transformer and radial stub was used. Receiver noise temperatures of 550 K DSB at 684 GHz were achieved at a 1.8 K physical temperature. The performance improved substantially when decreasing the temperature from 4.2 to 1.8 K. Comparison of model calculations and Fourier transform direct detection measurements of the tuning structure implies that this effect is likely due to the coincidence of operational frequency and the gap frequency of the niobium.  相似文献   

3.
Completely quasioptical heterodyne SIS receiver for radioastronomical applications at 115 GHz was designed and tested. Gaussian beam two lens input guide system and open structure SIS mixer with immersion lens were used. Integrated quasioptical structure consists of planar equiangular spiral antenna and superconductor—insulator—superconductor (SIS) tunnel junction as a mixing element connected to the antenna via microstrip impedance transformer. The best SIS mixer noise temperature at hot input and for heterodyne frequency 109.8 GHz with IF central frequency 1.4 GHz (DSB) was 28±7 K at the first quasiparticle step and 8±6 K at the second step.  相似文献   

4.
In this paper we describe the design and performance of a low-noise 345 GHz heterodyne receiver. The mixer uses a lead alloy SIS tunnel junction mounted in reduced height rectangular waveguide and is tuned with a single backshort. Local oscillator power is provided by a broad-band Gunn oscillator which drives a frequency quadrupler. The heterodyne performance has been verified in the laboratory using a gas absorption cell. In November 1991 this receiver was successfully commissioned and by direct comparison with a Schottky diode receiver we confirm a best receiver noise temperature of 150K (DSB) at 355 GHz and a tuning range of 300 to 380 GHz. The receiver is now available as a JCMT facility instrument.  相似文献   

5.
A heterodyne receiver using an SIS waveguide mixer with two mechanical tuners has been characterized from 480 GHz to 650 GHz. The mixer uses either a single 0.5 × 0.5 µm2 Nb/AlOx/Nb SIS tunnel junction or a series array of two 1 µm2 Nb tunnel junctions. These junctions have a high current density, in the range 8 – 13 kA/cm2. Superconductive RF circuits are employed to tune the junction capacitance. DSB receiver noise temperatures as low as 200 ± 17 K at 540 GHz, 271 K ± 22 K at 572 GHz and 362 ± 33 K at 626 GHz have been obtained with the single SIS junctions. The series arrays gave DSB receiver noise temperatures as low as 328 ± 26 K at 490 GHz and 336 ± 25 K at 545 GHz. A comparison of the performances of series arrays and single junctions is presented. In addition, negative differential resistance has been observed in the DC I–V curve near 490, 545 and 570 GHz. Correlations between the frequencies for minimum noise temperature, negative differential resistance, and tuning circuit resonances are found. A detailed model to calculate the properties of the tuning circuits is discussed, and the junction capacitance as well as the London penetration depth of niobium are determined by fitting the model to the measured circuit resonances.  相似文献   

6.
A 100-GHz-band Superconductor-Insulator-Superconductor (SIS) receiver has been developed for radio astronomy. The mixer used in this receiver has no mechanical tuning elements, such as a backshort or an E-plane tuner. The SIS junction consists of an array of four Nb/Al-AIOx/Nb junctions in series. The quasi-optic system for this receiver has been designed by frequency-independent matching method. The average DSB receiver noise temperature measured in the frequency range from 85 to 115 GHz is 40 K. The receiver is being successfully operated at the Taeduk Radio Astronomy Observatory in Korea.  相似文献   

7.
We present the results of the development of a 275–370 GHz, fixed-tuned double sideband (DSB) receiver based on superconductor-insulator-superconductor (SIS) junction mixer. The mixer block uses a full height rectangular waveguide and employs a novel radial-like probe structure with integrated bias-T. The measured uncorrected receiver noise temperature is 30–50 K corresponding to about 2–3 quantum noise across the full frequency band with an IF from 3.8 to 7.6 GHz. The mixer is to be used on the Atacama Pathfinder EXperiment (APEX) submillimeter telescope in Chile.  相似文献   

8.
We have designed and fabricated a fixed tuned low noise 600-700 GHz SIS mixer. Twin junctions connected in parallel was employed in the mixer design. A short microstrip tuning structure was used to minimize the RF signal loss at frequency above the energy gap. A receiver noise temperature below 200 K (without any loss correction) in the frequency range of 630 to 660 GHz was recorded. The lowest noise temperature of the receiver was 181 K (without any loss correction) at 656 GHz.  相似文献   

9.
    
We have developed a heterodyne receiver incorporating an SIS mixer for use on a radiotelescope operating at 1.3 mm wavelength. The mixer has a minimum conversion loss of <2 dB and contributes less than 60 K to a total double side band receiver noise temperature of about 80 K at 220 GHz and 230 GHz. To our knowledge this represents the lowest receiver noise ever reported in this frequency range.  相似文献   

10.
A Vertically Integrated Array (stacked array) of single windowSIS junctions (VIA SIS), based on a stacked five layer structure of Nb-AlOx-Nb-AlOx-Nb, has been fabricated and tested in a quasi optical mixer configuration at 106 GHz. This particular VIA SIS design has two stacked junctions fabricated by standard tri-layer process employing photolithography, reactive ion and wet etching processes. A simple expression for calculating the specific capacitance of single and arrayed SIS junctions is suggested. Due to the absence of interconnection leads between the individual junctions and reduced overall capacitance, compared to a single SIS junction, has the VIA SIS good future prospects for use in submillimeter wave SIS mixers The VIA SIS may be regarded as a lumped rather than a distributed structure at least up to the gap frequency at 730 GHz for Nb. DC-IV measurements show high quality of the Individual SIS junctions and good reproducibility of the array parameters over the substrate area. The first VIA SIS mixer experiments yielded a receiver noise temperature of 95 K (DSB) at a LO frequency of 106 GHz.  相似文献   

11.
A quasi-optical mixer containing two Nb/Al/AlOx/Nb superconducting tunnel junctions integrated into a NbTiN/SiO2/Al microstrip line is studied experimentally in the 800–1000 GHz frequency range. The mixer is developed as an optional front end of the heterodyne receiver operating in frequency band 3 or 4 and incorporated into the HIFI module of the Herschel space-borne telescope. The double-dipole antenna of the mixer is made of NbTiN and Al films; the quarter-wavelength reflector, of a Nb film. The mixer is optimized for the IF band of 4–8 GHz. The double-sideband noise temperature T RX measured at 935 GHz is 250 K at a mixer temperature of 2 K and an IF of 1.5 GHz. Within 850–1000 GHz, T RX remains below 350 K. The antenna pattern is symmetrical with a sidelobe level below −16 dB.  相似文献   

12.
We report recent results on a 565–690 GHz SIS heterodyne receiver employing a 0.36µm2 Nb/AlO x /Nb SIS tunnel junction with high quality circular non-contacting backshort and E-plane tuners in a full height waveguide mount. No resonant tuning structures have been incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, 680 GHz. Typical receiver noise temperatures from 565–690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15%, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii.  相似文献   

13.
The paper describes an uncooled front-end of the Schottky diode receiver system, which may be applied for observations of middle atmospheric ozone and carbon monoxide thermal emission lines at frequencies 110.8 GHz and 115.3 GHz, respectively. The mixer of the front-end has utilized high-quality Schottky diodes that allowed us to reduce the mixer conversion loss. The combination of the mixer and an ultra-low-noise IF amplifier in the one integrated unit has resulted in double-sideband (DSB) receiver noise temperature of 260 K at a local oscillator (LO) frequency of 113.05 GHz in the instantaneous IF band from 1.7 to 2.7 GHz. This is the lowest noise temperature ever reported for an uncooled ozone receiver system with Schottky diode mixers.  相似文献   

14.
We accurately measured the noise temperature and conversion loss of a cryogenically cooled Schottky diode operating near 800 GHz, using the UCB/MPE Submillimeter Receiver at the James Clerk Maxwell Telescope. The receiver temperature was in the range of the best we now routinely measure, 3150 K (DSB). Without correcting for optical loss or IF mismatch, the raw measurements set upper limits ofT M=2850 K andL M=9.1 dB (DSB), constant over at least a 1 GHz IF band centered at 6.4 GHz with an LO frequency of 803 GHz. Correction for estimated optical coupling and mismatch effects yieldsT M=1600 K andL M=5.5 dB (DSB) for the mixer diode itself. These values indicate that our receiver noise temperature is dominated by the corner cube antenna's optical efficiency and by mixer noise, but not by conversion loss or IF mismatch. The small fractional IF bandwidth, measured mixer IF band flatness from 2 to 8 GHz, and similarly good receiver temperatures at other IF frequencies imply that these values are representative over a range of frequencies near 800 GHz.  相似文献   

15.
We describe the design and performance of a 210–280 GHz SIS heterodyne receiver built for use on the Maxwell Telescope. The mixer utilises a lead alloy SIS tunnel junction, mounted in 41 reduced height rectangular waveguide, and is tuned with a backshort in 21 reduced height guide. The receiver has a receiver noise temperature of <200K (DSB) across the RF band from 210–270 GHz, with a best noise temperature measured in the laboratory of 113K (DSB) at 231 GHz. A prototype version of this receiver was successfully operated on the telescope in May 1989. By direct intercalibration with a Schottky diode receiver we deduced a best receiver noise temperature of 140K (DSB) at 245 GHz. Discrepancies between this figure and that derived from broad band thermal load calibration are discussed in the accompanying paper (Little et al., 1992, this issue).  相似文献   

16.
We have developed an integrated sideband-separating SIS mixer for the 100 GHz band based on the waveguide split block. The measured receiver noise temperatures with 4.0–8.0 GHz IF are less than 60 K in the LO frequency range of 90–110 GHz, and a minimum value of around 45 K is achieved at 100 GHz. The image rejection ratios are more than 10 dB in the frequency range of 90–110 GHz. We have installed the sideband-separating SIS mixer into an atmospheric ozone-measuring system at Osaka Prefecture University and successfully observed an ozone spectrum at 110 GHz in SSB mode. This experimental result indicates that the sideband-separating SIS mixer is very useful for astronomical observation as well as atmospheric observation.  相似文献   

17.
Recent results at 1 THz using normal-metal tuning circuits have shown that SIS mixers can work well up to twice the gap frequency of the junction material (niobium). However, the performance at 1 THz is limited by the substantial loss in the normal metal films. For better performance superconducting films with a higher gap frequency than niobium and with low RF loss are needed. Niobium nitride has long been considered a good candidate material, but typical NbN films suffer from high RF loss. To circumvent this problem we are currently investigating the RF loss in NbTiN films, a 15K Tc compound superconductor, by incorporating them into quasi-optical slot antenna SIS devices.  相似文献   

18.
We report on techniques to broaden the intermediate frequency (IF) bandwidth of the BerkeleyIllinoisMaryland Array (BIMA) 1mm SuperconductorInsulatorSuperconductor (SIS) heterodyne receivers by combining fixed tuned Double Side Band (DSB) SIS mixers and wideband Monolithic Microwave Integrated Circuit (MMIC) IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1 stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block in which mixer and MMIC can be maintained at different temperatures–in this receiver module the mixer at 4 K sees very little of the 10–20 mW heat load of the biased MMIC at 10 K. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 50 K DSB for LO = 215–240 GHz and below 80 K DSB for LO = 205 270 GHz. Over an IF frequency band of 1 – 4 GHz we have demonstrated receiver DSB noise temperatures of 40 – 60 K. Of the three receiver schemes, we feel Receiver III shows the most promise for continued development.  相似文献   

19.
Millimeter-wave characterization of a heterodyne receiver using (2 m2) Nb/Al-Ox/Nb Superconducting-Insulator-Superconducting (SIS) junctions arrays is reported. The fabrication of the Nb/Al-Ox/Nb SIS junction arrays as a heterodyne mixer is described. The leakage current of these junctions is below 2A at 4.2K and unmeasurable at 2.5K. The receiver gave a noise temperature Double Side Band (DSB) between 63K and 187K over the frequency range 80 to 115 GHz at the first conversion peak. The results are comparable to those obtained with SIS receivers using well researched lead junctions. Contrary to the lead junctions, our mixer using all Nb junctions have proven remarkably stable with respect to thermal cycling, characteristics which are required for space applications. To our knowledge, this is the most reliable low noise receiver operating in this frequency range.  相似文献   

20.
Several SIS quasiparticle mixers have been designed and tested for the frequency range from 80 to 115 GHz. The sliding backshort is the only adjustable RF tuning element. The RF filter reactance is used as a fixed RF matching element. A mixer which uses a single 2×2 m2 Pb-alloy junction in a quarter-height waveguide mount has a coupled conversion gain of GM(DSB)=2.6±0.5 dB with an associated noise temperature of TM(DSB)=16.4±1.8 K at the best DSB operation point. The receiver noise temperature TR(DSB) is 27.5±0.8 K for the mixer test apparatus. This mixer provides a SSB receiver noise temperature below 50 K over the frequency range from 91 to 96 GHz, the minimum being TR(SSB)=44±4 K. Another mixer with an array of five 5×5 m2 junctions in series in a full-height wave-guide mount has much lower noise temperature TM(DSB)=6.6±1.6 K, but less gain GM(DSB)=–5.1±0.5 dB.Contribution of the U.S. Government, not subject to copyright  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号