首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.  相似文献   

2.
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.  相似文献   

3.
Electrical field-induced concentration polarization (CP) and CP-based nonequilibrium electroosmotic slip are studied in fixed beds of strong cation-exchange particles using confocal laser scanning microscopy (CLSM) and the macroscopic electroosmotic flow (EOF) dynamics. A key property of the investigated fixed beds is the coexistence of quasi-electroneutral macroporous regions between the micrometer-sized particles and the ion-permselective (here, cation-selective) intraparticle mesopores with a mean size of 10 nm. The application of an external electrical field to the particles induces depleted and enriched CP zones along their anodic and cathodic interfaces, respectively, by the local interplay of diffusive and electrokinetic transport. The intensity and dimension of the CP zones depend on the applied electrical field strength and the fluid-phase ionic strength. With increasing field strength a limiting current density through a particle is approached, meaning that charge transport locally through a particle becomes controlled by the dynamics in the adjoining extraparticle convective-diffusion boundary layer (depleted CP zone). In this regime a nonequilibrium electrical double layer can be induced electrokinetically in the depleted CP zone and intraparticle pore space, resulting in nonlinear EOF in the interparticle macropore space. The local CP dynamics analyzed by CLSM is successfully correlated with the onset of nonlinearity in the macroscopic EOF dynamics. We further demonstrate that multiparticle effects arising in fixed beds (random close packings) of ion-permselective particles modulate significantly the local pattern of CP and intensity of the nonequilibrium electroosmotic slip with respect to the undisturbed single-particle picture.  相似文献   

4.
We study herein numerically the use of induced-charge electrokinetic phenomena to enable a flexible control of ion transport of dilute electrolyte in a straight ion concentration polarization system. The effect of three convection modes of induced-charge electrokinetic phenomena, including induced-charge electroosmosis, flow-field effect transistor, and alternating-current electroosmosis (ACEO), on convective arrestment of diffusive wave-front propagation is investigated by developing a cross-scale and fully coupled transient numerical simulation model, wherein multiple frequency electrochemical polarization and nonlinear diffuse charge dynamics in spatiotemporally varying solution conductivity are taken into account. We demonstrate by detailed comparative simulation studies that ACEO vortex flow field above a metal strip array arranged along the anodic chamber's bottom surface serves as the most efficient way for adjusting the salt density distribution at micrometer and even millimeter dimension, due to its high flexibility in controlling the stirring flow state with the introduction of two extra electrical parameters. The specific operating status is determined by whether the electrode array is floating in potential (induced-charge electroosmosis) or biased to ground (flow-field effect transistor) or forced to oscillate at another Fourier mode (ACEO). These results prove useful for on-chip electric current control with electroconvective stirring.  相似文献   

5.
This article illustrates the appearance and electrohydrodynamic consequences of concentration polarization (CP) in hierarchically structured monolithic fixed beds used as stationary phases in CEC and related electrical-field-assisted separation techniques. Subject of the investigation are silica-based monoliths in capillary format with a bimodal pore size distribution. Ion-permselectivity in the intraskeleton pore space together with diffusive and electrokinetic transport induces depleted and enriched CP zones at the anodic and cathodic interfaces, respectively, of the cation-selective mesoporous skeleton. The extent of electrical-field-induced CP is shown to be governed by the fluid phase ionic strength, which tunes the ion-permselectivity of the mesoporous monolith skeleton via local electrical double layer overlap, and by the applied electrical field strength, which determines local transport. The analysis of quantitative confocal laser scanning microscopy data, resolving CP on the local skeleton scale, indicates that at sufficiently high field strength a transition from intraskeleton to interskeleton boundary-layer-dominated transport of charged species occurs. This transition is correlated to the onset of macroscopically measured, nonlinear EOF velocities, whose occurrence is explained in the framework of a nonequilibrium electroosmotic slip. It is shown that the onset of nonlinear electrokinetics in the system can be tuned by properties of the BGE, particularly buffer pH, which modulates the pH-dependent surface charge density and consequently the ion-permselective skeleton's charge selectivity. Finally, the CP dynamics of monolithic and particulate fixed beds are compared, and the observed differences are related to the specific morphologies of the two hierarchical fixed bed structures.  相似文献   

6.
Theoretical studies of microfluidic dispensing processes   总被引:3,自引:0,他引:3  
The understanding of electrokinetic transport phenomena in microfluidic dispensers, an important component of biochips, is very important for designing and controlling biochips. A theoretical model to study the electrokinetic transport processes in microfluidic dispensers was developed in the work to study the controlling parameters for the dispensing process. The electrical field, the flow field, and the concentration field during dispensing processes were obtained by solving this theoretical model numerically. The effects of the electroosmotic mobility of the buffer solution, the diffusion coefficient and the electrophoretic mobility of the sample, the applied electrical field strength, and the channel size on the dispensing process are examined in this paper. The investigations show that optimal controlling parameter values can be found by using this model for dispensing any desired amount of the sample.  相似文献   

7.
We have investigated the basic dependence of electroosmotic flow (EOF) velocity and hydrodynamic dispersion in capillary electrochromatography (CEC) on the variation of applied field and mobile phase ionic strengths employing silica-based particulate and monolithic fixed beds. These porous media have a hierarchical structure characterized by discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial domains. While the macroporous domains contain quasi-electroneutral electrolyte solution, the ion-permselectivity (charge-selectivity) of the mesoporous domains determines the co-ion exclusion and counter-ion enrichment at electrochemical equilibrium (without superimposed electrical field) which depends on mesopore-scale electrical double layer (EDL) overlap and surface charge density. This adjustable, locally charge-selective transport realized under most general conditions forms the basis for concentration polarization (CP) induced by electrical fields superimposed in CEC. CP characterizes the formation of convective diffusion boundary layers with reduced (depleted CP zone) and increased (enriched CP zone) electrolyte concentration, respectively, at the anodic and cathodic interfaces in fixed beds containing the cation-selective, silica-based particles (or monolith skeleton). CP originates in the electrical field-induced coupled mass and charge transport normal to the charge-selective interfaces and has consequences for the EOF dynamics, hydrodynamic dispersion, and analyte retention in CEC. A secondary EDL with mobile counter-ionic space charge can be induced in the depleted CP zone leading to induced-charge EOF in the macroporous domains. It is characterized by a nonlinear dependence of the average EOF velocities on applied field strength and strong local velocity components tangential to the surface which enhance lateral pore-scale dispersion, thereby decreasing (axial) zone spreading. Differences in the pore space morphology of random-close sphere packings and monoliths criticially affect the intensity of CP and induced-charge EOF in these materials. CP is identified as a key phenomenon in CEC which also influences effective migration and the retention of charged analytes because the local intensity of CP inherently depends on applied field and mobile phase ionic strengths.  相似文献   

8.
Sample transport and electrokinetic injection bias are well characterized in capillary electrophoresis and simple microchips, but a thorough understanding of sample transport on devices combining electroosmosis, electrophoresis, and pressure-driven flow is lacking. In this work, we evaluate the effects of electric fields from 0 to 300 V/cm, electrophoretic mobilities from 10(-4) to 10(-6) cm(2)/Vs, and pressure-driven fluid velocities from 50 to 250 μm/s on sample injection in a microfluidic chemical cytometry device. By studying a continuous sample stream, we find that increasing electric field strength and electrophoretic mobility result in improved injection and that COMSOL simulations accurately predict sample transport. The effects of pressure-driven fluid velocity on injection are complex, and relative concentration values lie on a surface defined by pressure-driven flow rates. For high-mobility analytes, this surface is flat, and sample injection is robust despite fluctuations in flow rate. For lower mobility analytes, the surface becomes steeper, and injection depends strongly on pressure-driven flow. These results indicate generally that device design must account for analyte characteristics and specifically that this device is suited to high-mobility analytes. We demonstrate that for a suitable pair of peptides fluctuations in injection volume are correlated; electrokinetic injection bias is minimized; and electrophoretic separation is achieved.  相似文献   

9.
Zhao C  Yang C 《Electrophoresis》2011,32(5):629-637
An effective electrical boundary condition is formulated to describe AC field-driven induced-charge electrokinetic (ICEK) phenomena at the interface between a liquid and a leaky dielectric solid. Since most materials in reality possess finite dielectric and conductive properties, i.e. leaky dielectric, the present boundary condition can be used to describe the induced zeta potential on a leaky dielectric surface with consideration of both bond charges (due to polarization) and free charges (due to conduction). Two well-known limiting cases, i.e. the perfectly dielectric and the perfectly conducting wall boundary conditions can be recovered from the present formulation. Utilizing the derived boundary condition, we obtain analytical solutions in closed form for the AC field-driven induced-charge electroosmosis (ICEO) over two symmetric leaky dielectric blocks embedded in the walls of an infinitely long microchannel. Two important factors for the induced zeta potential are identified to respectively account for the polarization charges and the free charges, and their effects on AC field-driven ICEO oscillating flow patterns are analyzed. It is found that the flow patterns exhibit two counter-rotating vortices, which can be deformed, relocated, eliminated and even reverse their rotating directions. It is very promising that such temporary evolution of flow patterns can possibly induce chaotic advection which can enhance microfluidic mixing.  相似文献   

10.
An electrokinetic transport based approach for quantification of reversible flux decline due to the concentration polarization of an electrolyte solution in presence of charged colloids is presented. The model envisions the electrolyte transport across a charged cake or gel layer as transport of ions through charged cylindrical capillaries. This model is coupled with the standard theory of concentration polarization during cross flow membrane filtration. The analysis is carried out entirely in terms of generalized, non-dimensional variables. A dimensionless group termed as the scaled gel layer resistance evolves from the analysis, which accounts for the electrical properties of the charged nano-colloids and the electrolyte solution. A parametric study is performed to elucidate the coupled influence of mass transfer, membrane resistance, gel resistance, and electrical properties of the gel-electrolyte polarized layer. The effects of these parameters are examined on the filtration performance through the model equations.  相似文献   

11.
The transport of electrolytes in electric fields is a ubiquitous phenomenon commonly harnessed in microfluidics. A classic leaky dielectric model for flow generated by electric fields accurately predicts electrohydrodynamic transport phenomenon but is valid for millimeter-scale and larger flows and at relatively low ionic strength. Here, we derive and use a modified version of this model to sub-millimeter scales more relevant to microfluidics, where diffusive transport of charged species becomes non-negligible. We formulate a general equation set, the modified Ohmic model, applicable to the transport of binary, asymmetric electrolytes. We leverage this model to describe a variety of microfluidic electrokinetic systems, including DC electroosmosis, alternating current electrokinetics (ACEK) and induced-charge electroosmosis (ICEO), thus highlighting some unifying principles of these flows.  相似文献   

12.
The concentration polarization phenomena and its effects represent one of the main challenges for the optimal operation of many nanofluidic systems. A numerical investigation of the different electric current transition regimes observed during the concentration polarization phenomena in nanochannels is performed. This included a 2D‐axisymmetric simulation of the nanofluidic system (reservoir‐nanochannel‐reservoir). From these simulations, a novel mechanism is discovered that explains that different current transition regimes. This driving mechanism involves the applied electric field penetration while the convective flow mechanism is found to be negligible. This differs with the classical statement that the mixing process with less depleted areas initiated by an electrokinetic vortex instability starts the overlimiting regime. Additionally, the numerical approach allows us to identify new characteristics of the linear‐limiting transition such as source‐like and saddle‐like points of the electric field streamlines. The three voltage–current regimes (linear, limiting and overlimiting) are explained by observing and quantifying changes in electric field, potential, ion concentration and ion concentration gradients within the system.  相似文献   

13.
Zhang M  Ai Y  Sharma A  Joo SW  Kim DS  Qian S 《Electrophoresis》2011,32(14):1864-1874
Electrokinetic particle translocation through a nanopore containing a floating electrode is investigated by solving a continuum model, composed of the coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes equations for the flow field. Two effects due to the presence of the floating electrode, the induced-charge electroosmosis (ICEO) and the particle-floating electrode electrostatic interaction, could significantly affect the electrokinetic mobility of DNA nanoparticles. When the electrical double layers (EDLs) of the DNA nanoparticle and the floating electrode are not overlapped, the particle-floating electrode electrostatic interaction becomes negligible. As a result, the DNA nanoparticle could be trapped near the floating electrode arising from the induced-charge electroosmosis when the applied electric field is relatively high. The presence of the floating electrode attracts more ions inside the nanopore resulting in an increase in the ionic current flowing through the nanopore; however, it has a limited effect on the deviation of the current from its base current when the particle is far from the pore.  相似文献   

14.
The structural (specific surface area, liquid-filtration coefficient, average pore radius, volume porosity, and structural-resistance coefficient) and electrokinetic (counterion transport numbers, specific electrical conductivity, and electrokinetic potential) characteristics of porous glasses with different compositions have been determined in potassium nitrate solutions with concentrations of 10?3–10?1 M. All the membranes under investigation have been shown to exhibit the dependences of efficiency coefficients and counterion transport numbers on electrolyte concentration and pore size that are predicted by the theory of an electrical double layer. It has been established that, at a constant electrolyte concentration, the absolute values of electrokinetic potential increase with the average pore radius because of variations in the slipping-plane position.  相似文献   

15.
Movahed S  Li D 《Electrophoresis》2011,32(11):1259-1267
This article presents a numerical study of the electrokinetic transport phenomena (electroosmosis and electrophoresis) in a three-dimensional nanochannel with a circular cross-section. Due to the nanometer dimensions, the Boltzmann distribution of the ions is not valid in the nanochannels. Therefore, the conventional theories of electrokinetic flow through the microchannels such as Poisson-Boltzmann equation and Helmholtz-Smoluchowski slip velocity approach are no longer applicable. In the current study, a set of coupled partial differential equations including Poisson-Nernst-Plank equation, Navier-Stokes, and continuity equations is solved to find the electric potential field, ionic concentration field, and the velocity field in the three-dimensional nanochannel. The effects of surface electric charge and the radius of nanochannel on the electric potential, liquid flow, and ionic transport are investigated. Unlike the microchannels, the electric potential field, ionic concentration field, and velocity field are strongly size-dependent in nanochannels. The electric potential gradient along the nanochannel also depends on the surface electric charge of the nanochannel. More counter ions than the coions are transported through the nanochannel. The ionic concentration enrichment at the entrance and the exit of the nanochannel is completely evident from the simulation results. The study also shows that the flow velocity in the nanochannel is higher when the surface electric charge is stronger or the radius of the nanochannel is larger.  相似文献   

16.
Wang L  He YZ  Fu GN  Hu YY  Wang XK 《Talanta》2006,70(2):358-363
A porous core electroosmosis pump was studied and improved in accordance with the electroosmosis theory. Hexamethylene tetraamine (HMTA) was used as the additive of pump carrier solution to improve the flow rate stability and delivery efficiency. The influences of the electric field strength, porous core dimension and acetonitrile concentration of carrier solution on the pump flow rate and output pressure were investigated in detail. The improved electroosmosis pump can provide not only steady flow rate and large flow range, but also moderate output pressure. With the pump carrier solution of 0.5 mmol/L HMTA and the working voltage of 4950 V, the pump output pressure, flow rate and delivery efficiency achieved 1.1 MPa, 1.3 mL/min and 3.2 mL/(min mA), respectively. The pump can be employed for mobile phase delivery in the reversed-phase chromatographic separation of monolithic silica columns.  相似文献   

17.
Electroosmosis is the phenomenon of fluid flow induced by an applied electric field. This paper is concerned with electroosmosis in a porous material composed of closely-packed spheres immersed in a general electrolyte. A formula is obtained for the electroosmotic flow rate in the case when the double layer is much thinner than the particle radius. By combining this formula with electroosmosis measurements it is possible to determine the particle ζ potential. To test the validity of the model which underlies this, and most other electrokinetic calculations, ζ potentials obtained from Van der Put and Bijsterbosch's (J. Colloid Interface Sci. 92, 499, 1983) electroosmosis measurements are compared with potentials obtained from their conductivity and electrophoresis measurements.  相似文献   

18.
Electrokinetic processes that lead to pH gradient instabilities in carrier ampholyte-based IEF are reviewed. In addition to electroosmosis, there are four of electrophoretic nature, namely (i) the stabilizing phase with the plateau phenomenon, (ii) the gradual isotachophoretic loss of carrier ampholytes at the two column ends in presence of electrode solutions, (iii) the inequality of the mobilities of positively and negatively charged species of ampholytes, and (iv) the continuous penetration of carbonate from the catholyte into the focusing column. The impact of these factors to cathodic and anodic drifts was analyzed by simulation of carrier ampholyte-based focusing in closed and open columns. Focusing under realistic conditions within a 5 cm long capillary in which three amphoteric low molecular mass dyes were focused in a pH 3–10 gradient formed by 140 carrier ampholytes was investigated. In open columns, electroosmosis displaces the entire gradient toward the cathode or anode whereas the electrophoretic processes act bidirectionally with a transition around pH 4 (drifts for pI > 4 and pI < 4 typically toward the cathode and anode, respectively). The data illustrate that focused zones of carrier ampholytes have an electrophoretic flux and that dynamic simulation can be effectively used to assess the magnitude of each of the electrokinetic destabilizing factors and the resulting drift for a combination of these effects. Predicted drifts of focused marker dyes are compared to those observed experimentally in a setup with coated capillary and whole column optical imaging.  相似文献   

19.
Electrokinetic sample extraction and enrichment is introduced as a newly developed concept for the analysis of substances in sludge-type or paste-like matrices. It is based on electrokinetic transport phenomena as electromigration and electroosmosis occurring when an electrical field is applied to the fresh, wet samples. Problems usually associated to sample drying can be avoided, e.g., losses of volatile analytes or contamination. We have designed and built a suitable apparatus for electrokinetic sample extraction and enrichment. Appropriate operating conditions (field strength, buffer composition, concentration, and volume) were identified in experiments with an artificial sludge model and real-world lake sediments. A proof of principle of the method was provided by the electromigrative extraction and online enrichment on a solid-phase sorbent disk of an azo dye from a diatomaceous earth slurry. Electroosmotic extraction and enrichment of a cyanobacterial hepatotoxin at trace levels was finally investigated as an application example using lake sediments. Rather clean extracts were obtained even with high organic content sediment samples, as shown by high-performance liquid chromatography with diode array detection.   相似文献   

20.
This review is concerned with the phenomenological fluid dynamics in capillary and chip electrochromatography (EC) using high-surface-area random porous media as stationary phases. Specifically, the pore space morphology of packed beds and monoliths is analyzed with respect to the nonuniformity of local and macroscopic EOF, as well as the achievable separation efficiency. It is first pointed out that the pore-level velocity profile of EOF through packed beds and monoliths is generally nonuniform. This contrasts with the plug-like EOF profile in a single homogeneous channel and is caused by a nonuniform distribution of the local electrical field strength in porous media due to the continuously converging and diverging pores. Wall effects of geometrical and electrokinetic nature form another origin for EOF nonuniformities in packed beds which are caused by packing hard particles against a hard wall with different zeta potential. The influence of the resulting, systematic porosity fluctuations close to the confining wall over a distance of a few particle diameters becomes aggravated at low column-to-particle diameter ratio. Due to the hierarchical structure of the pore space in packed beds and silica-based monoliths which are characterized by discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial domains, charge-selective transport prevails within the porous particles and the monolith skeleton under most general conditions. It forms the basis for electrical field-induced concentration polarization (CP). Simultaneously, a finite and -- depending on morphology -- often significant perfusive EOF is realized in these hierarchically structured materials. The data collected in this review show that the existence of CP and its relative intensity compared to perfusive EOF form fundamental ingredients which tune the fluid dynamics in EC employing monoliths and packed beds as stationary phases. This addresses the (electro)hydrodynamics, associated hydrodynamic dispersion, as well as the migration and retention of charged analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号