首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Control of low-speed turbulent separated flow using jet vortex generators   总被引:3,自引:0,他引:3  
A parametric study has been performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and jet location (distance from the separation region in the free-stream direction). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).Nomenclature C p pressure coefficient, 2(P-P)/V 2 - C Q total flow coefficient, Q/ v - D 0 jet orifice diameter - Q total volumetric flow rate - R Reynolds number based on momentum thickness - u fluctuating velocity component in the free-stream (x) direction - V free-stream flow speed - VR ratio of jet speed to free-stream flow speed - x coordinate along the wall in the free-stream direction - jet inclination angle (angle between the jet axis and the wall) - jet azimuthal angle (angle between the jet axis and the free-stream direction in a horizontal plane) - boundary-layer thickness - momentum thickness - lateral distance between jet orifices A version of this paper was presented at the 12th Symposium on Turbulence, University of Missouri-Rolla, 24–26 Sept. 1990  相似文献   

2.
The article gives the results of an experimental investigation of the geometric structure of an opposing unexpanded jet. It discusses flow conditions with interaction between the jet and sub- and supersonic flows. It is shown that, with the outflow of an unexpanded jet counter to a supersonic flow, there are unstable flow conditions. For stable flow conditions with one roll, dependences are proposed determining the form of a jet in a supersonic opposing flow. A generalized dependence is obtained for the distribution of the pressure at the surface of a body with a jet, flowing out counter to a subsonic flow. The range of change in the determining parameters are the following: Mach numbers at outlet cross section of nozzle, M a = 1 and 3; Mach numbers of opposing flow, M = 0.6–0.9 and 2.9; degree of effectiveness of jet, n = p a /p = 0.5–800 (p a and p are the static pressures at the outlet cross section of the nozzle and in the opposing flow); the ratios of the specific heat capacities, a = = 1.4; the drag temperatures of the jet and the flow, To = Toa = 290°K.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 89–96, January–February, 1977.  相似文献   

3.
A numerical solution is obtained for the problem of air flow past a sphere under conditions when nonequilibrium excitation of the vibrational degrees of freedom of the molecular components takes place in the shock layer. The problem is solved using the method of [1]. In calculating the relaxation rates account was taken of two processes: 1) transition of the molecular translational energy into vibrational energy during collision; 2) exchange of vibrational energy between the air components. Expressions for the relaxation rates were computed in [2]. The solution indicates that in the state far from equilibrium a relaxation layer is formed near the sphere surface. A comparison is made of the calculated values of the shock standoff with the experimental data of [3].Notation uVmax, vVmax velocity components normal and tangential to the sphere surface - Vmax maximal velocity - P V max 2 pressure - density - TT temperature - eviRT vibrational energy of the i-th component per mole (i=–O2, N2) - =rb–1 shock wave shape - a f the frozen speed of sound - HRT/m gas total enthalpy  相似文献   

4.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar combined convection from three isothermal heat horizontal cylinders in staggered tube-bank and four isothermal heat horizontal cylinders in in-line tube-bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface including the zone beyond the separation point. The predicted values of total, pressure and friction drag coefficients, average Nusselt number and the plots of velocity flow fields and isotherms are also presented.
Die Finite-Elemente-Lösung von laminarer Strömung und kombinierter Konvektion von Luft in einer versetzten oder fluchtenden Rohranordnung
Zusammenfassung Eine Methode der finiten Elemente wird zur Lösung der vollständigen Navier-Stokes- und der Energiegleichung für die Probleme der laminaren kombinierten Konvektion an drei isothermen geheizten horizontalen Zylindern in versetzter Rohranordnung sowie für vier isotherme geheizte horizontale Zylinder in fluchtender Anordnung verwendet.Die Veränderung der Wandschubspannung, des Druckes und der Nusselt-Zahl werden für die gesamte Zylinderoberfläche, einschließlich des Bereiches nach dem Ablösepunkt, bestimmt. Die Werte des gesamten Widerstandsbeiwertes aufgrund von Druck und Reibung, die durchschnittliche Nusselt-Zahl und die Diagramme des Geschwindigkeitsfeldes und der Isothermen werden ebenfalls aufgezeigt.

Nomenclature C specifie heat - C D total drag coefficient - C f friction drag coefficient - C p pressure drag coefficient - D diameter of cylinder,L=2R 0 - G, g gravitational acceleration - Gr Grashof number, g(TwT )D 3/v 2 - h local heat transfer coefficient - K thermal conductivity - L spacing between the centers of cylinder - M l shape function - N i shape function - Nu, local and average Nusselt numbers - P dimensionless pressure, p*/u 2 - p *,p pressure, free stream pressure - Pe Peclet number,RePr - Pr Prandtl number, c/K - Ra Rayleigh number,Gr Pr - Re Reynolds number,Du /v - R 0 radius of cylinder - T temperature - T w temperature on cylinder surface with fixed value - T free stream temperature - v dimensionless x-direction component of velocity,v */u - u * x-direction component of velocity - u free stream velocity - v dimensionless Y-direction component of velocity,v */u - v * Y-direction component of velocity - X x-direction axis - x dimensionless x-direction coordinate,x */D - x* x-direction coordinate - Y Y-direction axis - y dimensionless Y-direction coordinate,y */D - y * Y-direction coordinate Greek symbols coefficient of volumetric thermal expansion - plane angle - dynamic viscosity - kinematic viscosity, / - density of fluid - w dimensionless surface shear stress, * w /u 2 - skw/* surface shear stress - dimensionless temperature,   相似文献   

5.
In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

6.
Summary The behavior of a spherical bubble near a solid wall is analysed by considering the liquid compressibility. The equation of motion of the bubble with first order correction for the effects of liquid compressibility and solid wall is derived. The equation obtained here coincides with the known result in case of L or C . Further experimental study is made on the motion of bubbles produced by a spark discharge in water. The theoretical results are in good agreement with the experiments.
Das Verhalten einer kugelförmigen Blase in einer kompressiblen Flüssigkeit in der Nähe einer festen Wand
Übersicht Bei Berücksichtigung der Flüssigkeitskompressibilität wird das Verhalten einer kugelförmigen Blase in der Nähe einer festen Wand analysiert. Die Gleichung der Bewegung der Blase wird mit der Korrektur erster Ordnung für den Einfluß der Flüssigkeitskompressibilität und der festen Wand angegeben. Aus der erhaltenen Gleichung wird für L oder C das bekannte Ergebnis hergeleitet. Darüber hinaus wird eine experimentelle Untersuchung der Blasenbewegung durchgeführt. Die Blase wird mit Hilfe von Funkendurchschlägen zwischen Elektroden in Wasser erzeugt. Die theoretischen Ergebnisse stimmen gut mit den Experimenten überein.
  相似文献   

7.
Calculations of the flow of the mixture 0.94 CO2+0.05 N2+0.01 Ar past the forward portion of segmentai bodies are presented. The temperature, pressure, and concentration distributions are given as a function of the pressure ahead of the shock wave and the body velocity. Analysis of the concentration distribution makes it possible to formulate a simplified model for the chemical reaction kinetics in the shock layer that reflects the primary flow characteristics. The density distributions are used to verify the validity of the binary similarity law throughout the shock layer region calculated.The flow of a CO2+N2+Ar gas mixture of varying composition past a spherical nose was examined in [1]. The basic flow properties in the shock layer were studied, particularly flow dependence on the free-stream CO2 and N2 concentration.New revised data on the properties of the Venusian atmosphere have appeared in the literature [2, 3] One is the dominant CO2 concentration. This finding permits more rigorous formulation of the problem of blunt body motion in the Venus atmosphere, and attention can be concentrated on revising the CO2 thermodynamic and kinetic properties that must be used in the calculation.The problem of supersonic nonequilibrium flow past a blunt body is solved within the framework of the problem formulation of [4].Notation V body velocity - shock wave standoff - universal gas constant - ratio of frozen specific heats - hRt/m enthalpy per unit mass undisturbed stream P pressure - density - T temperature - m molecular weight - cp specific heat at constant pressure - (X) concentration of component X (number of particles in unit mass) - R body radius of curvature at the stagnation point - j rate of j-th chemical reaction shock layer P V 2 pressure - density - TT temperature - mm molecular weight Translated from Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 5, No. 2, pp. 67–72, March–April, 1970.The author thanks V. P. Stulov for guidance in this study.  相似文献   

8.
The first and the second laws of thermodynamics are applied to obtain general expressions for the asymptotic Nusselt (Nu) and entropy generation (Ns) numbers in ducts of circular cross-section or a channel made of two long parallel plates. The governing momentum and energy equations are simplified with reasonable assumptions and solved to obtain closed form of analytical solutions. Results of the asymptotic Nusselt and Bejan numbers are presented graphically as a function of fluid index (n), Peclet number (Pe), and group parameter (Br/).  相似文献   

9.
In the hypersonic thin shock layer approximation for a small ratio k of the densities before and after the normal shock wave the solution of [1] for the vicinity of the stagnation point of a smooth blunt body is extended to the case of nonuniform outer flow. It is shown that the effect of this nonuniformity can be taken into account with the aid of the effective shock wave radius of curvature R*, whose introduction makes it possible to reduce to universal relations the data for different nonuniform outer flows with practically the same similarity criterion k. The results of the study are compared with numerical calculations of highly underexpanded jet flow past a sphere.Notations x, y a curvilinear coordinate system with axes directed respectively along and normal to the body surface with origin at the forward stagnation point - R radius of curvature of the meridional plane of the body surface - uV, vV., , p V 2 respectively the velocity projections on the x, y axes, density, and pressure - and V freestream density and velocity The indices =0 and=1 apply to plane and axisymmetric flows Izv. AN SSSR, Mekhanika Zhidkosti i Gaza, Vol. 5, No. 3, pp. 102–105, 1970.  相似文献   

10.
This paper studies Lp-estimates for solutions of the nonlinear, spatially homogeneous Boltzmann equation. The molecular forces considered include inverse kth-power forces with k > 5 and angular cut-off.The main conclusions are the following. Let f be the unique solution of the Boltzmann equation with f(v,t)(1 + ¦v2¦)(s 1 + /p)/2 L1, when the initial value f 0 satisfies f 0(v) 0, f 0(v) (1 + ¦v¦2)(s 1 + /p)/2 L1, for some s1 2 + /p, and f 0(v) (1 + ¦v¦2)s/2 Lp. If s 2/p and 1 < p < , then f(v, t)(1 + ¦v¦2)(s s 1)/2 Lp, t > 0. If s >2 and 3/(1+ ) < p < , thenf(v,t) (1 + ¦v¦2)(s(s 1 + 3/p))/2 Lp, t > 0. If s >2 + 2C0/C1 and 3/(l + ) < p < , then f(v,t)(1 + ¦v¦2)s/2 Lp, t > 0. Here 1/p + 1/p = 1, x y = min (x, y), and C0, C1, 0 < 1, are positive constants related to the molecular forces under consideration; = (k – 5)/ (k – 1) for kth-power forces.Some weaker conclusions follow when 1 < p 3/ (1 + ).In the proofs some previously known L-estimates are extended. The results for Lp, 1 < p < , are based on these L-estimates coupled with nonlinear interpolation.  相似文献   

11.
Base pressure measurements were performed on a blunt cone in the Ludwieg-Tube facility at the DLR in Göttingen at Mach numbers from M = 4.99 to 6.83. The angle of incidence was varied between = 0° and 15°. The results show the influence of Mach number and angle of incidence on the base pressure.List of symbols D base diameter - R base half diameter; D = 2R - r n nose radius - angle of incidence - cone apex angle - p free stream static pressure - p B base pressure (one pressure tap only) - p ref reference pressure - U free stream velocity - M free stream Mach number - Re L free stream Reynolds number based on cone length - free stream density - v free stream kinematic viscosity - ratio of specific heats - q free stream dynamic pressure - c pB base pressure coefficient   相似文献   

12.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

13.
We consider the equation a(y)uxx+divy(b(y)yu)+c(y)u=g(y, u) in the cylinder (–l,l)×, being elliptic where b(y)>0 and hyperbolic where b(y)<0. We construct self-adjoint realizations in L2() of the operatorAu= (1/a) divy(byu)+(c/a) in the case ofb changing sign. This leads to the abstract problem uxx+Au=g(u), whereA has a spectrum extending to + as well as to –. For l= it is shown that all sufficiently small solutions lie on an infinite-dimensional center manifold and behave like those of a hyperbolic problem. Anx-independent cross-sectional integral E=E(u, ux) is derived showing that all solutions on the center manifold remain bounded forx ±. For finitel, all small solutionsu are close to a solution on the center manifold such that u(x)-(x) Ce -(1-|x|) for allx, whereC and are independent ofu. Hence, the solutions are dominated by hyperbolic properties, except close to the terminal ends {±1}×, where boundary layers of elliptic type appear.  相似文献   

14.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

15.
A one-equation low-Reynolds number turbulence model has been applied successfully to the flow and heat transfer over a circular cylinder in turbulent cross flow. The turbulence length-scale was found to be equal 3.7y up to a distance 0.05 and then constant equal to 0.185 up to the edge of the boundary layer (wherey is the distance from the surface and is the boundary layer thickness).The model predictions for heat transfer coefficient, skin friction factor, velocity and kinetic energy profiles were in good agreement with the data. The model was applied for Re 250,000 and Tu0.07.Nomenclature µ,C D Constants in the turbulence kinetic energy equation - C 1,C 2 Constants in the turbulence length-scale equation - Skin friction coefficient atx - D Cylinder diameter - F Dimensionless flow streamwise velocityu/u e - k Turbulence kinetic energy =1/2 the sum of the squared three fluctuating velocities - K Dimensionless turbulence kinetic energyk/u e /2 - I Dimensionless temperature (T–T w )/(T T w ) - l Turbulence length-scale - l e Turbulence length-scale at outer region - Nu D Nusselt number - p Pressure - Pr Prandtl number - Pr t Turbulent Prandtl number - Pr k Constant in the turbulence kinetic energy equation - R Cylinder radius - Re D Reynolds number u D - Re x Reynolds number u x - R K Reynolds number of turbulence - T Mean temperature - T Mean temperature at ambient - T s Mean temperature at surface - Tu Cross flow turbulence intensity, - u Mean flow streamwise velocity - u Fluctuating streamwise velocity - u e Mean flow velocity at far field distance - u Mean flow velocity at ambient - u* Friction velocity - v Mean velocity normal to surface - V Dimensionless mean velocity normal to surface - x,x 1 Distance along the surface - y Distance normal to surface - Dimensionless pressure gradient parameter - Boundary layer thickness atu=0.9995u e - Transformed coordinate iny direction - Fluid molecular viscosity - t Turbulent viscosity - eff + t - µ Fluid molecular viscosity at ambient - Kinematic viscosity/ - Density - Density at ambient - w Wall shear stress - w,0 Wall shear stress at zero free stream turbulence  相似文献   

16.
In the present paper approximate solutions for the fluid and thermal boundary layers in an incompressible laminar plane wall jet with isothermal and adiabatic walls have been studied respectively, and comparisons with the known exact solutions have been made wherever possible. It is found that the present method is simple and straightforward, and gives results being in good agreement with the exact solutions. For moderate values of the Prandtl number the method may be used for calculating the heat transfer from an isothermal wall and temperature recovery factor for an adiabatic wall respectively.Nomenclature a* dimensionless temperature gradient at the wall - c p specific heat at constant pressure - K momentum flux through a cross-section of the jet - Q volume flux through a cross-section of the jet - r* temperature recovery factor - T temperature of the fluid in the boundary layer - T r adiabatic wall temperature - T temperature of the fluid at rest - u, v velocity components along and normal to the plane wall respectively - x, y rectangular coordinates along and normal to the plane wall respectively - z Greek symbols fluid boundary layer thickness - t, T thermal boundary layer thickness for an isothermal and an adiabatic wall respectively - dimensionless y-coordinate - dimensionless temperature difference (T–T )/T - coefficient of thermal conductivity - coefficient of viscosity - coefficient of kinematic viscosity - Prandtl number - w shearing stress on the plane wall  相似文献   

17.
The construction suggested by an inverse-scattering analysis establishes the existence of solutions u(x, t) of the Korteweg-de Vries equation subject to an initial condition u(x, 0)=U(x), where U has certain regularity and decay properties. It is assumed that UC3(), that U is piecewise of class C 4, and that U (j) decays at an algebraic rate for j4. The faster the decay of U (j) the smoother the solution will be for t0. If U and its first four derivatives decay faster than ¦x¦–n for all n, then the solution will be infinitely differentiable for t0. For t>0, the decay rate of u(x, t) as x + increases with the decay rate of U; but the decay rate as x - depends on the regularity of U. A solution u 1 of the Korteweg-de Vries equation such that u 1(·, 0)C() may fail to remain in class C for all time if u 1(x, 0) does not decay fast enough as ¦x¦.This research was performed in part as a Visiting Member of the Courant Institute of Mathematical Science.  相似文献   

18.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

19.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

20.
Dynamic shear measurements in the frequency range from 10–4 to 500 rad/s at the flow and main transition of a polydisperse poly(vinyl acetate) and a monodisperse polystyrene sample are presented. For both samples the Vogel temperature of the flow transition T FT is smaller than the Vogel temperature of the main transition T , independent of the criteria used for data evaluation. The difference between the two Vogel temperatures corresponds to results for samples with other molecular weight and polydispersity from the literature. The T FT <T relation is discussed in terms of short () and long (FT) dynamic glass transitions in entangled polymers. The relation is explained by preaveraging of the energy landscape for the long flow transition by the short glass transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号