首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Membrane pores that are induced in oriented membranes by an antimicrobial peptide (AMP), protegrin-1 (PG-1), are investigated by (31)P and (2)H solid state NMR spectroscopy. We incorporated a well-studied peptide, protegrin-1 (PG-1), a beta-sheet AMP, to investigate AMP-induced dynamic supramolecular lipid assemblies at different peptide concentrations and membrane compositions. Anisotropic NMR line shapes specifying toroidal pores and thinned membranes, which are formed in membrane bilayers by the binding of AMPs, have been analyzed for the first time. Theoretical NMR line shapes of lipids distributed on the surface of toroidal pores and thinned membranes reproduce reasonably well the line shape characteristics of our experimentally measured (31)P and (2)H solid-state NMR spectra of oriented lipids binding with PG-1. The lateral diffusions of lipids are also analyzed from the motionally averaged one- and two-dimensional (31)P and (2)H solid-state NMR spectra of oriented lipids that are binding with AMPs.  相似文献   

2.
Proton and phosphorus magnetic resonance spectra of substituted methylphosphonic acids have been determined as a function of pH. A method has been developed for measuring the 31P shift indirectly by optimal heteronuclear decoupling of the 1H spectra of samples and standards. Control experiments have demonstrated the broad applicability of this technique to the characterization of low milligram samples of N-phosphonomethylglycine and potential metabolites.  相似文献   

3.
To understand the behaviors of phosphoric acids in fuel cells, the ion conduction mechanisms of phosphoric acids in condensed states without free water and in a monomer state with water were studied by measuring the ionic conductivity (sigma) using AC impedance, thermal properties, and self-diffusion coefficients (D) and spin-lattice relaxation times (T1) with multinuclear NMR. The self-diffusion coefficient of the protons (H+ or H3O+), H2O, and H located around the phosphate were always larger than the diffusion coefficients of the phosphates and the disparity increased with increasing phosphate concentration. The diffusion coefficients of the samples containing D2O paralleled those in the protonated samples. Since the 1H NMR T1 values exhibited a minimum with temperature, it was possible to determine the correlation times and they were found to be of nanosecond order for a distance of nanometer order for a flip. The agreement of the ionic conductivities measured directly and those calculated from the diffusion coefficients indicates that the ion conduction obeys the Nernst-Einstein equation in the condensed phosphoric acids. The proton diffusion plays a dominant role in the ion conduction, especially in the condensed phosphoric acids.  相似文献   

4.
The concentration of structural hydroxyl groups in the apatite mineral of enamel, dentin and cementum of healthy human teeth was estimated by reference to stoichiometric hydroxyapatite to be 73 +/- 3, 18 +/- 2 and 18 +/- 1%, respectively.  相似文献   

5.
The NMR spectra of solutions containing partially deuterated anhydrous hypophosphorous acid (H2POOH) and its complexes with organic bases as proton acceptors were obtained in CD2Cl2 in the temperature range 183–253 K. Under these conditions, the state of slow exchange is achieved, as evidenced by the fine spin-spin and isotope (H/D) structure of the NMR signals. The formation and strengthening of the hydrogen bond by the OH group result in strong shielding of the 31P nucleus and decrease the spin-spin coupling constants of nuclei in the PH2 group. Saturation of these effects occurs in going from proton to base. Direct and long-range effects of H/D substitution in the OH and PH groups on the H, 31P, and 15N chemical shifts in complexes were measured. The signs of these effects were explained in terms of a simplified model of dynamic interaction of covalent and hydrogen bonds. The kinetics of the interconversion of a cyclic H2POOH dimer and a zwitterionic complex with pyridine were studied by dynamic 1H NMR, and thermodynamic and kinetic parameters of the process were measured. A hypothetical mechanism of the reaction with the transition state close to an open-chain dimer with one hydrogen bond was proposed.  相似文献   

6.
7.
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.  相似文献   

8.
The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.  相似文献   

9.
The suitability of high-resolution solid-state 31P NMR for a straightforward determination of the protonation state of phosphate groups as well as of their pK2 values extracted from solid state mono : dianionic ratios has been demonstrated.  相似文献   

10.
Complexes [Zn[Se(2)P(OEt)(2)](2)]( infinity ) (1) and [Zn(2)[Se(2)P(O(i)Pr)(2)](4)] (2) are prepared from the reaction of Zn(ClO(4))(2).6H(2)O and (NH(4))[Se(2)P(OR)(2)] (R = Et and (i)Pr) in a molar ratio of 1:2 in deoxygenated water at room temperature. Positive FAB mass spectra show m/z peaks at 968.8 (Zn(2)L(3)(+)) and 344.8 (ZnL(+)) for 1 and m/z at 1052.8 (Zn(2)L(3)(+)) for 2. (1)H NMR spectra exhibit chemical shifts at delta 1.43 and 4.23 ppm for 1 and 1.41 and 4.87 ppm for 2 due to Et and (i)Pr group of dsep ligands. While the solid-state structure of compound 1 is a one-dimensional polymer via symmetrically bridging dsep ligands, complex 2 in the crystalline state exists as a dimer. In both 1 and 2, zinc atoms are connected by two bridging dsep ligands with an additional chelating ligand at each zinc atom. The dsep ligands exhibit bimetallic biconnective (micro(2), eta(2)) and monometallic biconnective (eta(2)) coordination patterns. Thus, each zinc atom is coordinated by four selenium atoms from two bridging and one chelating dsep ligands and the geometry around zinc is distorted tetrahedral. The Zn-Se distances range between 2.422 and 2.524 A. From variable-temperature (31)P NMR studies it has been found that monomer and dimer of the complex are in equilibrium in solution via exchange of bridging and chelating ligands. However, at temperature above 40 degrees C the complex exists as a monomer and shows a very sharp peak while with lowering of the temperature the percentage of dimer increases gradually at the expense of monomer. Below -90 degrees C the complex exists as a dimer and two peaks are observed with equal intensities which are due to bridging and chelating ligands. (77)Se NMR spectra of both complexes at -30 degrees C exhibit three doublets due to the presence of monomer and dimer in solution.  相似文献   

11.
A new piperazinium dihydrogen orthophosphate, C4H12N2(H2PO4)2 was discovered and characterized by combining information from X-ray diffraction, 31P CP/MAS NMR and thermal analysis (TG/DTA). The compound C4H12N2(HPO4)·H2O, was also studied in order to compare these two similar materials. The hydrothermal stability is investigated for the system: 1.0 C4H10N2: n H3PO4: 55–60 H2O, 0.5 < n < 3. The reaction mixtures with pH in the range 1.6–8.4 were placed at a fixed temperature in the range 20–180 °C for ca. 5 days. C4H12N2(H2PO4)2 was obtained when n > ca. 2. A crystal of piperazinium dihydrogen phosphate, C4H12N2(H2PO4)2 was structurally investigated using X-ray diffraction: triclinic, space group P1¯, a = 7.023(2), b = 7.750(3), c = 12.203(4) Å, α = 84.668(7), β = 81.532(7) and γ = 63.174(6)°, V = 586.0(4) Å3 and Z = 2. The reactivity of C4H12N2(H2PO4)2 was investigated by systematic solvothermal syntheses.  相似文献   

12.
Foucault HM  Bryce DL  Fogg DE 《Inorganic chemistry》2006,45(25):10293-10299
Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.  相似文献   

13.
The title compounds are prepared via Gabriel-synthesis following known or improved procedures. Novel methods using 31P{1H}-NMR controlled titrations of aminomethylphosphine oxides lead to dissociation constants (given as basicity or acidity constants resp.) and to stability constants. Dynamically averaged and ion specific chemical shifts δP were derived.  相似文献   

14.
A previously published new solid-state nuclear magnetic resonance (NMR) method is applied to the interdiffusion of poly(methacrylate) (PMMA) and poly(vinylidene fluoride) (PVF2) above their Tg. Via a variation of the cross-polarization technique magnetization is transferred from protons to fluorines. When this magnetization is made to disappear at the fluorine sites, only those protons that are distant from fluorines greater than the distance over which cross-polarization functions will retain their magnetization. In this way we detect the fraction of PMMA near (ca. 20 Å) PVF2. Starting from sheets of PMMA and PVF2, which are then heated at 190°C for a variable time, and applying the above technique, we can determine the fractions of PMMA and PVF2 that have diffused within a distance of a few Å of each other. The intrinsic diffusion coefficients of PMMA and PVF2 determined from such experiments compare well with literature data. Initial attempts to fit the experimental data suggest that the concentration dependence of the diffusion coefficients cannot be neglected. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The 1H, 13C{1H}, and 31P NMR spectral parameters of some pyrophosphates were determined in CDCl3. The most complicated 1H spectrum can be solved fully only as (A3MN)R6XX′R6′(MNA3)′, where R6 (= ―N(CH3)2) is coupled only to phosphorus (X). Second‐order coupling between phosphorus was found and solved with iterative analysis. A signal shape of one of the carbon resonance cannot be explained only with couplings. Explanation for exceptional shape was searched from molecular modeling results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
1H and 13C NMR spectra of symmetrically substituted cyclotriphosphazenes exhibit second‐order effects. The influence of the 31P,31P coupling constants between ring phosphorus atoms on these effects was studied. Some values of this coupling constant between phosphorus bearing identical substituents were measured using 13C satellites of the 31P signals or by introduction of a chiral substituent on the third phosphorus atom. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Multinuclear solid‐state NMR and powder X‐ray diffraction data collected for phosphonate materials Zr(O3PC6H4PO3) · 3.6H2O and Sn(O3PC6H4PO3)0.85(O3POH)0.30 · 3.09H2O have resulted in the layered structure, where the phosphonic acids cross‐link the layers. The main structural motif (the 111 connectivity in the PO3 group) has been established by determination of chemical shift anisotropy parameters for phosphorus nuclei in the phosphonate groups. An analysis of the variable‐temperature 31P T1 measurements and the shapes of the phosphorus resonances in the 31P static NMR spectra have resulted in the dipolar mechanism of the phosphorus spin‐lattice relaxation, where the rotating phenylene rings reorient dipolar vectors PH as a driving force of the relaxation process. It has been found that water protons do not affect the 31P T1 times. The activation energy of the phenylene rotation in both compounds has been determined as low as 12.5 kJ/mol. The interpretation of the phosphorus relaxation data has been independently confirmed by the measurements of 1H T1 times for protons of the phenylene rings.  相似文献   

19.
Rapid advances in solid-state MAS NMR made it possible to probe protein dynamics on a per-residue basis, similar to solution experiments. In this work we compare methyl 2H relaxation rates measured in the solid and liquid samples of alpha-spectrin SH3 domain. The solution data are treated using a model-free approach to separate the contributions from the overall molecular tumbling and fast internal motion. The latter part forms the basis for comparison with the solid-state data. Although the accuracy of solid-state measurements is limited by deuterium spin diffusion, the results suggest a significant similarity between methyl dynamics in the two samples. This is a potentially important observation, preparing the ground for combined analysis of the dynamics data by solid- and solution-state NMR.  相似文献   

20.
The icosahedral dicarboranes and their decapitated anion, 1-R'-1,2-C(2)B(10)H(10) (closo) and [7-R'-7,8-C(2)B(9)H(10)](-) (nido), exert a distict influence at the alpha position of substituents attached to the cage carbon atom. The closo fragment is electron-withdrawing while the nido anion is electron-releasing. These effects are studied by (31)P NMR, phosphorus oxidation, and phosphorus protonation in [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-) species. The (31)P NMR chemical shift dependence is related to the R alkyl or aryl nature of [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-). No direct relationship to the nature of the R substituent on the nido-carboranylmonphosphine toward oxidation has been found. The basicity of the nido-alkylcarboranylmonophosphines is the highest while the lowest corresponds to the nido-arylcarboranylmonophosphines. Interpretation can be carried out qualitatively by considering the electronic properties of the cluster and the nature of the R groups. The influence of R' is less relevant. Confirmation of the molecular structure of the oxidated and protonated nido-carboranylmonophosphine compounds was obtained by X-ray diffraction analysis of [NBu(4)][7-P(O)Ph(2)-8-Ph-7,8-C(2)B(9)H(10)] and [7-PH((i)Pr)(2)-8-Me-7,8-C(2)B(9)H(10)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号