首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
地平式折轴望远镜结构紧凑、使用方便,被用于人造激光信标系统。它不仅能实现共孔径发射和接收信标激光,还能进行目标的捕获、跟踪和瞄准。共孔径偏振分光系统利用发射和接收激光偏振态的不同来实现分光,其分光光路如图l所示。在此系统中,望远镜方位角和俯仰角的变化将直接引起激光偏振态的变化,从而造成偏振分光效率的严重退化。故偏振分光系统中相位延迟的计算与补偿是亟待研究的问题。  相似文献   

2.
激光导星共孔径发射接收的偏振分光效率研究   总被引:2,自引:1,他引:1  
在地平式折轴望远镜上开展自适应光学瑞利激光导星实验,研究了信标光束同孔径发射和接收偏振分光技术。基于镜面膜层复振幅反射特性,采用琼斯矩阵描述方法,建立了偏振分光物理模型,研究了共孔径发射和接收偏振耦合分光的效率问题,并与实验结果进行了比较。结果表明,由于镜面膜层对s光和p光的相位延迟差异,系统偏振分光效率随着望远镜的方位角旋转会发生周期性的变化,同时也受望远镜天顶角变化的影响。在研究光路反射镜相位延迟对往返分光效率影响规律的基础上,提出了提高地平式折轴望远镜激光导星共孔径发射和接收偏振分光效率,消除受望远镜方位角和天顶角变化影响的技术途径。  相似文献   

3.
 在地平式折轴望远镜中开展自适应光学激光导星实验,研究了共孔径发射接收信标激光束偏振耦合分光效率随望远镜方位角和天顶角变化的补偿技术。提出了一种由四分之一波片和法拉第旋光器构成的相位补偿器,通过旋转四分之一波片以实时补偿由于望远镜旋转导致的光路相位延迟量的变化。数值计算表明,望远镜处于任意方位角和天顶角位置时,通过1°步长旋转四分之一波片,可使补偿后的偏振分光效率理论上达到99.90%以上。实验从原理上定性地验证了该方法的有效性。只要测量出镜面的相位延迟,便可计算得到望远镜处于不同方位角和天顶角情况下有效补偿所需的四分之一波片旋转角度,据此可建立实用的旋转波片偏振补偿装置。  相似文献   

4.
激光雷达偏振成像遥感的望远镜系统偏振分析   总被引:3,自引:0,他引:3  
路小梅  江月松  饶文辉 《光学学报》2007,27(10):1771-1774
激光雷达偏振成像主要是利用不同目标散射光偏振度的差异来实现对目标成像的。由于大部分光学系统都存在消偏振效应,因此系统自身的消偏振问题在成像过程中必须考虑。根据近轴理论和消像差的要求设计出卡塞格伦望远镜的几何结构,应用琼斯理论、光波的相干矩阵和菲涅耳反射理论对空气和卡塞格伦望远镜的交界面进行了消偏振分析,并使用Matlab软件仿真了卡塞格伦望远镜在镀金属反射膜前后,反射光偏振度在望远镜径向直径上各点的变化曲线。根据仿真结果可以看出偏振成像系统中使用的卡塞格伦望远镜在镀铝金属反射膜时其消偏振效应在成像过程中可以忽略。  相似文献   

5.
针对保偏光纤陀螺静态参数受光路偏振串扰误差的影响而使陀螺精度受到制约的问题,从实际应用的角度,研究了保偏光纤陀螺光路中由于各光学器件不理想和熔接点对轴角度误差等因素引起偏振串扰误差的机制。基于琼斯矩阵和相干矩阵,并引入随温度变化的保偏光纤双折射变量,建立了变温环境下保偏光纤陀螺的光路传输模型,对变温环境下偏振串扰误差对保偏光纤陀螺零漂和随机游走的影响进行了理论分析和估算。同时开展了变温环境下光纤环偏振串扰对其静态参数影响的相关实验。实验结果与模型分析结果基本一致,表明该模型是合理的。  相似文献   

6.
封窗经常使用在望远镜和大口径平行光管等光学系统中,置于整个系统最前端,其透射波前误差将影响整个系统的成像质量。检测手段决定加工精度,当封窗口径大于目前商用平面干涉仪的最大口径Φ800mm时,则无法进行全口径检测。针对这一问题,提出了1种新型的封窗全口径透射检验方法,将待测封窗置于由球面干涉仪和大口径、长焦距的标准凹球面镜组成的光路中进行透射检验。利用该检测方法成功检测了一块口径为Φ856mm、厚度为35mm、材料为熔融石英的封窗,检测结果均方根(RMS)值为0.0191λ(λ=632.8nm),满足设计要求。实验结果验证了该检测方法对于大口径封窗透射检验的可行性。  相似文献   

7.
大口径太阳望远镜中常用波片来进行偏振定标和偏振测量,为了对这类波片的延迟量和方位角进行准确测量,提出一种基于双光束检偏的波片测量系统,建立了该系统对应的数学模型。测量系统中检偏器的方位角可作为参数进行拟合,克服了单光束测量系统中检偏器方位角误差的影响;同时,根据测量系统的结构,对待测波片的延迟量范围进行分析,实现了对偏振定标和偏振测量中所使用波片的精确测量。分析了测量系统误差的主要来源,包括光源光强噪声、电机定位误差和探测器非线性响应,并对探测器非线性响应进行了校正。该方法测量1/4波片和127°波片的延迟量和方位角误差小于0.02°,测量27°~145°和215°~333°范围波片样品的延迟量和方位角误差小于0.05°。  相似文献   

8.
为了降低光谱仪的偏振敏感度,提出了一种在会聚光路中设计退偏器的方法。该方法首先将系统的望远镜和准直镜视为辅助光路,使得光束的偏振状态可以用Stocks矢量来表示;然后使用Mueller矩阵来表示元件的偏振特性,并推导出了基于Mueller矩阵的系统偏振敏感度模型;最后利用多重多元回归分析来提升Mueller矩阵的计算速度与精度。基于该方法设计了一款放置在会聚光路中的改进型退偏器,系统的偏振敏感度小于1%,像点分裂距离小于8μm,该结果满足设计要求,验证了该方法在会聚光路中设计退偏器的有效性。  相似文献   

9.
随着天文探测水平的提高,偏振像差对天文望远镜成像质量的影响逐渐凸显。基于偏振光线追迹,分析了一种用于探测宇宙弱引力透镜效应的无遮拦离轴天文望远镜的偏振像差,得到了该望远镜的琼斯瞳、振幅响应矩阵以及望远镜中各个反射镜的二向衰减和相位延迟分布特性。计算发现偏振像差会影响该望远镜的成像对比度,同时还会改变其点扩展函数的空间分布。计算了偏振像差对望远镜光学椭率的影响,结果表明偏振像差会导致该望远镜光学椭率在全视场范围内发生不同程度的变化,最大改变量为7.5×10~(-3),平均改变量为2.7×10~(-3)。在视场[-0.0487°,0.155°]附近,偏振像差使得该望远镜光学椭率最大插值误差由1.2×10~(-4)增大为1.1×10~(-3)。本文研究结果表明,对于探测弱引力透镜效应等要求超高成像质量的天文望远镜,偏振像差不可忽略,需要进行优化设计。  相似文献   

10.
利用同一个望远镜孔径完成激光的发射和接收,目前广泛采用的分光方式主要有半透半反镜分光、高速转镜分光和偏振分光等。其中,半透半反镜分光方式效率太低,高速转镜分光方式工程难度较大。偏振分光方式则较为简单,在一些实验装置中得到较多的使用。在地平式折轴望远镜上进行自适应光学瑞利激光导星技术研究,实验中发现,采用偏振分光方式进行激光的发射和接收(见图1)时,由于机架的方位和俯仰旋转带动反射镜做相应旋转,分光效率随着望远镜的方位角和天顶角变化会发生周期性的改变,使得在某些角度下几乎接收不到回光。  相似文献   

11.
波片精度对偏振光学系统性能有着重要的影响,故需要对其相位延迟量和快轴方位角进行高精度测量。提出了一种新型基于双频激光干涉相位检测的高精度波片测量方法,采用双频激光外差干涉光路,利用一个可旋转半波片和一个角锥反射棱镜测量待测波片,可实现任意波片的相位延迟量和快轴方位角的高精度同时测量。所提方法不受波片、偏振片等双折射器件的方位角精度的影响,从原理上避免了该类系统误差。所设计的系统具有共光路结构,测量稳定性高,信号处理采用相位检测方式相对于一般的光强检测方式测量精度更高。此外,所设计的测量系统中元件很少,结构简单,测量过程快捷。误差分析表明,在现有实验条件下,测量系统的波片相位延迟量的测量不确定度约为3.9′,快轴方位角的测量不确定度约为5′′。实验比对结果表明,所提方法的测量结果与其他方法测量结果的一致性很好。重复性测量实验表明,测量结果的标准偏差约为2′。  相似文献   

12.
冷梅  杨艳芳  何英  刘海港  常强  李春芳 《光学学报》2012,32(5):526001-251
利用衍射积分公式数值模拟了不同阶次的空间变化偏振矢量贝塞尔高斯(BG)光束经过强聚焦系统后在焦点附近的强度分布。数值结果显示空间变化偏振矢量BG光束聚焦后在光束传播轴负方向存在焦斑移位现象,其焦斑移位的大小与光束的模阶次、光束宽度、波长以及局部偏振状态密切相关。矢量光束偏振态的变化依靠液晶相位延迟器(LCVR)的相位延迟角度来控制,由于LCVR的相位延迟角度可以在0~π之间连续变化,从而改变光束的局部偏振状态,间接实现了对矢量光束焦斑移位大小的实时控制,在光学微操纵领域具有潜在的应用价值。  相似文献   

13.
王国聪  常伟军  胡博 《应用光学》2017,38(6):896-902
针对地基大口径望远镜的机上自适应光学系统构建的低轨空间目标偏振成像系统,提出一种基于非偏振标准星和机上起偏装置的宽带偏振定标方法。该方法以非偏振标准星作为光源,并在望远镜系统的一次像面处加入起偏装置对入射光的偏振态进行调制,再结合基于非线性最小二乘拟合的偏振定标方法分两步对整个偏振成像系统进行宽带偏振定标。为验证该偏振定标方法的效果,利用Matlab软件基于相干矩阵和偏振追迹构建了相应的模型进行仿真分析,仿真结果表明该偏振定标方法可以有效减小望远镜系统偏振效应对偏振探测准确性的影响,并且偏振定标元件的初始角度误差在±5°范围内时对偏振定标准确性的影响极小。  相似文献   

14.
采用遗传算法优化设计了宽波段低偏振高反膜,实现了反射式望远镜在不同波段的偏振像差校正。利用偏振像差函数分析了金属膜和低偏振膜对卡塞格林望远镜偏振像差的影响。仿真结果表明,镀低偏振膜的望远镜产生的二项衰减像差略小于镀铝膜的情况,而相位延迟像差下降明显,在355,532,1046 nm波长处分别降低了1.13°,1.00°,0.68°。最后,根据望远镜的Mueller矩阵与大气退偏参数的关系计算了不同波段和视场条件下所选膜对退偏参数误差的影响,结果表明,校正望远镜偏振像差后退偏参数的测量精度会提高。  相似文献   

15.
该仪器由北京光学仪器厂制成。它带有潜望及测角装置,同时实现观察定向、测距和测方位。适用于地面炮兵及地质、矿山、邮电、港务等测量工作。测距仪由主机、电源箱和三脚架组成。主机由观察、测角和测距三系统组成。观察系统是带潜望的双筒望远镜。测角系统包括测高低角和水平角两套机构。主机可绕竖轴和水平轴自由转动,角度值由指示窗和读数鼓轮读得。测距系统有发射和接收两部分。光路中用了一种多层介质膜镜片,发射、接  相似文献   

16.
提出一种保偏光纤环和Y波导调制器直接耦合偏振轴测量方法。设计并搭建了偏振轴在线检测系统,通过将检测光路插入到直接耦合工艺过程中,使空间中平行的Y波导和光纤组件端面同时清晰成像于CCD像面;通过图像处理判断两端面边缘相互平行关系获取两者偏振轴的角度偏差。实验结果表明,搭建的系统用于Y波导和保偏光纤偏振轴对准时,系统实测值与理论值能较好地吻合,且系统测量精度在1°之内,对应于偏振轴角度误差产生的尾纤输出串音优于-35 d B,证明了方法的可行性。  相似文献   

17.
光学仪器     
眼镜、放大镜、显微镜、望远镜P111.412007032906极紫外太阳望远镜成像质量检测系统设计=Testing sys-temfor performance of EUVsolar telescope[刊,中]/巩岩(中科院长春光机所应用光学国家重点实验室.吉林,长春(130033))//光学精密工程.?2006,14(6).?969-973为了在实验室模拟空间环境,检测极紫外太阳望远镜成像质量,提出了由激光等离子光源、Newton型准直光管系统、背照射CCD相机、真空系统等组成的17~30nm极紫外准直光管检测系统,给出了详细的物理分析、光学设计和真空系统设计方法和结果。真空实验测试结果表明,系统在80min内,真空…  相似文献   

18.
非线性误差是基于Faraday效应的干涉式数字闭环光纤大电流传感器基本测量准确度的主要影响因素。考虑到传感光路中偏振交叉耦合、圆偏振态不理想等因素的影响,计算了与调制信号同频的干涉信号,得到了闭环反馈相移与被测电流之间的非线性跟踪关系。仿真结果表明:传感光纤线性双折射、1/4波片方位角及相位延迟误差、相位调制器输出尾纤偏振串音是光纤大电流传感器产生非线性误差的主要原因。需根据被测电流的动态范围相应提高相位调制器输出尾纤耦合及熔接对轴精度。通过求解光纤敏感环微分模型方程,提出了波片参数与椭圆双折射光纤拍长-螺距比的匹配条件,实现了传感器对Faraday效应的线性响应,降低了椭圆偏振传感信号造成的非线性误差。实验结果表明:采用参数匹配的1/4波片后,在6~500 kA范围内,传感器比例因子随被测电流的变化量为0.2%,相比于理想1/4波片降低了一个数量级。  相似文献   

19.
基于地基大口径自适应望远镜构建成像偏振探测系统,可以同时获取空间目标的光强和偏振图像,将光强信息和偏振信息相结合,能为空间目标的探测和识别提供更多依据。现有的1.23m自适应望远镜在设计时并未采用保偏设计,在开展观测研究前需得到光学系统的偏振传输特性。但目前难以直接对大口径望远镜进行偏振标定,为了分析1.23m自适应望远镜光学系统的偏振传输特性,基于相干矩阵和光线追迹法建立了望远镜系统偏振传输特性分析模型。仿真得出了1.23m自适应望远镜光学系统的偏振传输特性,发现光学系统会引入较大的偏振探测偏差。为减小偏振探测偏差,给出了一个可行的保偏改进方案,并通过已建立的模型验证了该方案的有效性。  相似文献   

20.
张卫国 《中国光学》2018,11(2):231-236
为了实时抑制太阳耀光对海面目标探测的影响,基于偏振光学理论,设计并构建了一套偏振自适应滤波探测系统。本文介绍了偏振探测系统的功能和组成、偏振探测及背景抑制原理,并给出了该系统的光学设计结果;利用自适应偏振滤波探测系统,通过搭载望远镜跟踪试验平台,针对海上典型目标,开展了相关的偏振验证实验。实验结果表明:海面太阳耀光存在比较明显的偏振特性,采用常规探测手段,探测器极易出现饱和,而利用偏振探测技术则能够有效抑制太阳耀光的影响,进而实现目标的有效探测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号