首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
径向非均匀磁场下的磁控管工作性能模拟   总被引:4,自引:2,他引:2  
 为了改善磁控管的输出频谱,使模拟结构更接近实际情况,考虑了磁钢和极靴的实际尺寸。用MAFIA对磁控管内的磁系统进行建模和模拟。得到的磁场纵向分布有随着径向半径的增大而增大的趋势,这种径向不均匀性与实验测试结果一致。将非均匀的径向阶梯形变化磁场分布带入腔体热测计算,模拟得到的π模工作频率2.437 GHz,实际工作频率2.450 GHz,相对偏差0.5%,并在高频谐波的抑制上获得了输出频谱的显著改善,使微波炉磁控管具有更好的电磁防护和实际应用。  相似文献   

2.
利用场论的方法推导了6腔扇形腔结构相对论磁控管的色散关系,并用牛顿迭代法对色散关系进行了求解,得到了色散关系曲线.利用三维PIC粒子模拟,对该结构的相对论磁控管分别进行了冷腔和热腔研究,冷腔研究得到了7π模谐振频率为2.42GHz,与本文理论推导的色散关系有很好的一致性.在热腔情况下,电子能量为437keV,电子束流为12.2kA,外加磁场为0.6T,模拟得到了频率为4.5GHz,平均峰值功率为0.96Gw的C波段的高功率微波输出,分别通过相空间图和不同腔内射频场随时间的变化曲线可以确定器件工作在2π模,效率约为18%,且频谱纯净.当进一步对参数进行优化后,在注入的电子能量和电子束流分别为1.05MeV和20.7kA,外加磁场为0.7T时,得到平均功率达到约4.4GW,频率为4.37GHz微波输出,效率约为20%.  相似文献   

3.
C波段高稳定度磁控管是目前磁控管的研究重点。对5.8GHz磁控管进行模拟研究,冷腔计算磁控管π模频率为5.863GHz,阳极用双端双隔模带结构磁控管的工作频率与相邻模式频率分隔度为44%。模拟磁控管输出频率为5.856GHz,输出微波功率约1.2kW。对研制的磁控管进行注入锁定实验研究,输出微波功率1.047kW,效率约为58%。磁控管锁频锁相后输出的频率和相位稳定。  相似文献   

4.
一种5.8 GHz磁控管粒子模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
 借助3维粒子仿真软件对一种新型18叶片5.8 GHz磁控管进行了动态模拟,比较了爆炸式发射与电子注发射的不同。利用磁路电子注发射方式针对不同的阴极发射电流进行了动态模拟,得到了不同发射电流条件下磁控管的工作特性。同时,利用FEMM仿真软件对磁控管磁路进行了仿真,得到了磁控管互作用空间的磁场分布,并在此基础上,对非均匀磁场下磁控管动态性能进行了模拟。  相似文献   

5.
赵林  钱宝良  李锐  杜广星 《中国物理 C》2008,32(Z1):268-270
利用场论的方法推导了6腔扇形腔结构相对论磁控管的色散关系, 并用牛顿迭代法对色散关系进行了求解, 得到了色散关系曲线. 利用三维PIC粒子模拟, 对该结构的相对论磁控管分别进行了冷腔和热腔研究, 冷腔研究得到了π模谐振频率为2.42GHz, 与本文理论推导的色散关系有很好的一致性. 在热腔情况下, 电子能量为437keV, 电子束流为12.2kA, 外加磁场为0.6T, 模拟得到了频率  相似文献   

6.
针对高功率微波器件的低磁场小型化发展需求,设计了工作在S波段的低磁场紧凑型相对论磁控管,建立了三维仿真模型。设计衍射输出结构,输出模式为TE11模。在圆波导中TE11模具有最小的截止半径,因此选取TE11模输出比高阶模输出具有更小的波导半径。分析了磁控管的输出性能随磁场、输出波导半径和倾斜角的变化规律。在磁场0.34 T、电压352 kV条件下,模拟仿真结果显示磁控管输出功率达到567 MW,功率转换效率为62.5%,在频率为2.37 GHz时波导半径仅为77.5 mm。  相似文献   

7.
利用三维电磁场与粒子模拟软件对Ka波段带状注相对论速调管放大器进行了分析设计和模拟计算。通过对谐振腔本征模的计算确定了腔体的冷腔高频特性,采用三维粒子模拟软件(PIC)模拟分析速调管各腔及整管的束波互作用过程。模拟结果表明:在带状电子注电压500kV、束流1kA、宽高比40∶1,注入微波功率1.94kW和均匀聚焦磁场0.8T的条件下,获得的输出微波功率达到142MW,频率40GHz,效率28.4%,增益约48.6dB。  相似文献   

8.
张军  张威  巨金川  周云霄 《强激光与粒子束》2020,32(10):103001-1-103001-8
为进一步提高X波段相对论速调管放大器的输出功率,采用理论分析与粒子模拟的方法对双群聚腔级联式相对论速调管放大器进行了研究。分析了提高注入腔对注入微波吸收效率的方法,分析了群聚腔调制能力与腔体模式、Q值等参数的关系,分析了输出腔提取效率与Q值的关系。在三维粒子仿真中,设计了模式反射器抑制TEM模式泄露与杂模振荡,得到了功率超过2.5 GW,频谱纯净,频率锁定为8.40 GHz,输出输入微波相位差稳定,抖动不超过2°的高功率微波输出。  相似文献   

9.
基于一个6腔同腔结构相对论磁控管,透明阴极金属条个数与磁控管腔数相同时相对论磁控管易于工作在2π模式,减少为腔体数目一半时易于工作在π模式,提出了旋转扇形透明阴极金属条角向位置实现相对论磁控管中心频率跳变的方案.经仿真优化,设计了外径15mm,6个扇形金属条的透明阴极,每个扇形金属条的角向宽度为20°.运用粒子模拟软件,仿真分析了角向位置金属条与阳极块相对应及金属条与谐振腔相对应两种情况,在工作磁场保持0.75T,调节工作电压在600~800kV 内变化时,模拟结果表明,相对论磁控管可以很稳定地分别工作在2π模式和π模式,即通过旋转透明阴极实现相对论磁控管频率跳变.  相似文献   

10.
设计了一种全腔提取轴向输出相对论磁控管。在模工作的N腔磁控管中, 该结构利用磁耦合的方式通过两个相邻谐振腔在一个扇形波导内激励起TE11模, 然后再由N/2个相位相同的扇形波导TE11模沿轴向向外传输。对L波段全腔提取轴向输出磁控管进行了仿真设计, 在600 kV, 6.3 kA的条件下, 获得1.89 GW微波输出, 功率转换效率50%, 微波频率1.57 GHz。该结构在径向方向上仅增加一个扇形波导厚度, 便于实现相对论磁控管的紧凑、高效设计。  相似文献   

11.
阳福香  党方超  贺军涛  巨金川  张晓萍 《强激光与粒子束》2020,32(10):103006-1-103006-6
高频段相对论速调管放大器(RKA)是近年来高功率微波领域的研究热点之一,其发展主要受限于模式竞争、相位抖动和效率偏低等问题。设计了一种径向线RKA,主要由输入腔、两组非均匀双间隙群聚腔和三间隙提取腔等四部分构成。通过比较单双间隙群聚腔与电子束互作用的耦合系数,说明了非均匀双间隙群聚腔具备对电子束较强的调制能力。前端加载TEM模式反射器的非均匀双间隙群聚腔的工作在TM01-π模式,Q值较大,有利于谐振腔之间的能量隔离。采用两组非均匀双间隙群聚腔级联的方式,在注入功率仅10 kW情况下,实现短漂移管长度下电子束深度群聚达110%。粒子模拟结果表明,该器件具有效率高的优点,在电子束电压400 kV,电流5 kA,磁场强度0.4 T条件下,得到功率825 MW,频率14.25 GHz,效率41%的微波输出。  相似文献   

12.
回旋速调管放大器注-波互作用分析   总被引:4,自引:4,他引:0       下载免费PDF全文
 给出了自洽非线性大信号理论分析方法,在理论分析和高频计算的基础上,建立了回旋速调管放大器注-波互作用计算模型,对其进行数值计算。研究多种参量对放大器输出功率、增益、效率等的影响,通过优化得到了中心频率34 GHz的四腔回旋速调管放大器设计方案。粒子模拟表明:在工作电压65 kV,注电流8 A,电子注横向与纵向速度比为1.5时,输出功率230 kW,带宽230 MHz,电子效率45%,饱和增益33 dB。  相似文献   

13.
 主要研究了强流相对论环形电子束在等位谐振腔内的非线性自调制振荡,用小信号理论分析了电子起振的条件,得出了电子起振的扰动频率。基于该理论分析,又提出了一种不外加磁场的新型高功率微波器件,该器件主要由一个圆柱谐振腔和一个同轴波导输出腔构成。用2.5维MAGIC粒子模拟软件对该非线性过程进行数值模拟,分析了输入电压、电流对输出微波功率的影响。模拟结果表明这种结构中确实存在非线性不稳定性,自调制的扰动频率则由电子束的初始能量、电荷密度和电子束的半径以及谐振腔的空间结构给定。利用谐振腔长为4.7 cm、二极管电压为2.8 MV、电流为20 kA的电子束,可以得到频率为4.29 GHz、功率为6 GW的微波输出,束-波转换效率约为11%。  相似文献   

14.
通过分析广义传输线理论中的模式耦合系数,优化设计了一支94GHz光滑缓变结构回旋管,当电子注电压50kV,电流6A,横纵速度比1.4,工作磁场3.548 5T时,在频率94.099GHz处得到了41%互作用效率,约120kW的功率输出;与折变结构回旋管相比,缓变结构回旋管中的工作模式纯度提高约27dB,注波互作用效率提高约7%。基于自洽非线性理论计算的互作用效率与PIC模拟结果有较好的一致性。  相似文献   

15.
提出了一种具有阴极帽结构的L波段相对论磁控管的设计方案,并给出了数值模拟结果。在相对论磁控管中引入阴极帽是为了降低轴向泄露电流并提高功率转换效率。三维粒子模拟用于研究引入阴极帽后产生的影响。结果显示,当在束波互作用区域的上游和下游同时添加阴极帽,并且将阴极延伸出阳极块结构,直至衍射输出结构时,轴向泄露电流不仅会从1 kA降至72 A,且功率转换效率会有明显提高。虽然如此,阴极帽的引入除了以上优点外,同样会带来微波反射。因此,阴极帽的半径和位置对于效率有至关重要的影响,它们之间存在一个最优数值来保证效率最高。当电压为563 kV, 磁场为0.34 T时,轴向衍射输出结构L波段相对论磁控管输出微波功率为2.13 GW,频率为1.59 GHz,相应的功率转换效率为75.5%。  相似文献   

16.
相对论速调管放大器双间隙输出腔的粒子模拟   总被引:1,自引:2,他引:1       下载免费PDF全文
 用3维PIC程序对S波段强流相对论速调管放大器(RKA)双间隙输出腔内的微波提取情况进行了模拟,给出了产生微波的详细物理图像。模拟结果表明:采用双间隙输出腔能增加束波互作用长度,使提取到的微波功率和效率得到提高。模拟得到了输出微波功率随直流渡越角、随电子束外径与漂移管之间的距离、随基波调制深度以及耦合孔径向间距变化的规律。在电子束压580 kV、束流4 kA、基波调制深度80%、引导磁场1.5 T的条件下,模拟得到周期时间平均功率800 MW,频率约2.85 GHz,周期时间平均效率34.8%的微波。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号