首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ZrAlON films were fabricated using the reactive ablation of a ceramic ZrAlO target in N2 ambient by pulsed laser deposition (PLD) technique. ZrAlON films were deposited directly on n-Si(100) substrates and Pt coated silicon substrates, respectively, at 500 °C in a 20 Pa N2 ambient, and rapid thermal annealed (RTA) in N2 ambient at 1000 °C for 1 min. Cross sectional high-resolution transmission electron microscopy (HRTEM) images clearly show that the ZrAlON/Si interface is atomically sharp without an interfacial layer, and the films are completely amorphous. The electron diffraction pattern of TEM also indicates the amorphous structure of the RTA ZrAlON film. X-ray photoelectron spectroscopy (XPS) measurement was performed to confirm the effective incorporation of nitrogen with a content of about 6 at. %, and to reveal the N–O bonding in ZrAlON films. The dielectric constant of amorphous ZrAlON was determined to be about 18.2 which is more than 16.8 for ZrAlO by measuring the Pt/films/Pt capacitors. Capacitance–voltage (C–V) measurements show that a small equivalent oxide thickness (EOT) of 1.03 nm for 4 nm ZrAlON film on the n-Si substrate with a leakage current of 28.7 mA/cm2 at 1 V gate voltage was obtained. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

2.
Pb(Mg1/3Nb2/3)O3PbTiO3 (PMNT) thin films on Pt/TiO2/SiO2/Si substrates with and without a LaNiO3 (LNO) buffer layer have been prepared using a sol–gel method. Structures and electrical properties of these two films have been investigated and compared. Highly (111)-oriented PMNT thin films with a certain amount of pyrochlore phase are obtained on bare Pt electrodes. On the contrary, (100)-oriented PMNT thin films with pure perovskite phase are formed on Pt electrodes with a LNO buffer layer. Cracks are found in the former but not in the latter. The dielectric constant of PMNT thin films on LNO-buffer Pt electrodes is larger than that on bare Pt electrodes. A great lowering of the leakage current is observed in the films with a LNO buffer layer. The improvement in the electrical properties is attributed to both the elimination of cracks and the suppression of pyrochlore phase in the films. PACS 77.84.Dy; 77.80.-e; 77.22.Gm  相似文献   

3.
Ba0.9Sr0.1TiO3 (BST) thin films were deposited on fused quartz and Pt/TiN/Si3N4/Si substrates by radio frequency magnetron sputtering technique. Microstructure and chemical bonding states of the BST films annealed at 700 °C were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and Raman spectrum. Optical constants including refractive indices, extinction coefficients and bandgap energies of the as-deposited BST film and the BST films annealed at 650, 700 and 750 °C, respectively, were determined from transmittance spectra by envelope method and Tauc relation. Dielectric constant and remnant polarization for the BST films increase with increasing annealing temperature. Leakage current density-applied voltage (JV) data indicate that the dominant conduction mechanism for all the BST capacitors is the interface-controlled Schottky emission under the conditions of 14 V < V < 30 V and −30 V < V < −14 V. Furthermore, the inequipotential JV characteristics for the BST films annealed at various temperatures are mainly attributed to the combined effects of the different thermal histories, relaxed stresses and strains, and varied Schottky barrier heights in the BST/Pt and Pt/BST interfaces.  相似文献   

4.
SrZrO3 (SZO) thin films have been prepared on Pt-coated silicon substrates and directly on Si substrates by pulsed laser deposition (PLD) using a ZrSrO target at a substrate temperature of 400 °C in 20 Pa oxygen ambient. X-ray –2 scans showed that the as-deposited films remain amorphous at a substrate temperature of 400 °C. The dielectric constant of SZO has been determined to be in the range 24–27 for the Pt/SZO/Pt structure. Capacitance–voltage (C–V) characteristics of a metal-oxide-semiconductor (MOS) structure for SZO films deposited in 20 Pa oxygen ambient and 20 Pa nitrogen ambient (SZON) indicated that incorporation of nitrogen during the substrate heating and film deposition can suppress the formation of an interfacial SiO2 layer, and the SZON films have a lower equivalent oxide thickness (EOT) than that of the SZO films. However, the leakage current of the SZON films is larger than that of the SZO films. The EOT is about 1.2 nm for a 5-nm SZON film deposited at 400 °C. The leakage-current characteristics of as-deposited SZON films and SZON films post-annealed in oxygen ambient by rapid thermal annealing (RTA) have been studied comparatively. The films post-annealed with RTA have a lower leakage current than the as-deposited SZON films. Optical transmittance measurements showed that the band gap of the films is about 5.7 eV. It is proposed that SrZrO3 films prepared at 400 °C are potential materials for alternative high-k gate-dielectric applications. PACS 77.84.Bw; 77.84.-s; 77.55.+f  相似文献   

5.
Amorphous aluminate YAlO3 (YAO) thin films on n-type silicon wafers as gate dielectric layers of metal–oxide–semiconductor devices are prepared by pulsed laser deposition. As a comparison, amorphous aluminate LaAlO3 (LAO) thin films are also prepared. The structural and electrical characterization shows that the as-prepared YAO films remain amorphous until 900 °C and the dielectric constant is ∼14. The measured leakage current of less than 10-3 A/cm2 at a bias of VG=1.0 V for ∼40-nm-thick YAO and LAO films obeys the Fowler–Nordheim tunneling mechanism. It is revealed that the electrical property can be significantly affected by the oxygen pressure during deposition and post rapid thermal annealing, which may change the fixed negative charge density at the gate interface. PACS 77.55.+f; 81.15.Fg; 81.40.Ef  相似文献   

6.
Lanthanum-modified lead titanate (PLT) thin films have been grown directly on Pt/Ti/SiO2/Si (100) and LaNiO3/Si (100) substrates by a modified sol-gel method. X-ray diffraction analysis shows that the PLT thin films are polycrystalline. The infrared optical properties of the thin films were investigated using infrared spectroscopic ellipsometry (IRSE) in the spectral range of 2.5–12.5 m. By fitting the measured ellipsometric parameter (tan and cos) data with a three phase model (air/PLT/Pt) for the PLT thin films on Pt/Ti/SiO2/Si (100) and a four phase model (air/PLT/LNO/Si) for the PLT thin films on LaNiO3/Si (100) substrates, and a derived classical dispersion relation for the thin films, the optical constants and thicknesses of the thin films have been simultaneously obtained. The refractive index and extinction coefficient of the PLT thin films on Pt/Ti/SiO2/Si (100) substrates are slightly larger than those on LaNiO3/Si (100) substrates. Given the infrared semitransparent metal of Nickel currently used, the absorption of the Ni/PLT/Pt and Ni/PLT/LNO/Si multilayer thin films in this study is very large around 3.0 m and 5.7 m wavelength range and decrease to 15% or 20% in the 8–12.5 m wavelength region.  相似文献   

7.
In-plane c-axis oriented CaBi4Ti4O15 (CBTi144) films were fabricated on Pt foils using a complex metal alkoxide solution. The a/b-axis orientation of the ferroelectric films was affected by the preferred orientation of Pt foil, which is associated with the thickness. The 500 nm-thick CBTi144 films showed good ferro- and piezoelectric properties on 0.010 mm-thick Pt foils. The Pr and Ec were 26 C/cm2 and 230 kV/cm, respectively, at an applied voltage of 75 V. The d33 was characterized as 25–34 pm/V by piezoresponse force microscopy. The values enhanced compared to those of the CBTi144 thin film with random orientation. The polar-axis oriented CBTi144 films would open for novel devices as Pb-free piezoelectric materials. PACS 77.84.-s; 68.37.-d; 81.15.-z  相似文献   

8.
Nd-substituted bismuth titanate Bi3.54Nd0.46Ti3O12 (BNT) thin films were prepared on (111)Pt/Ti/SiO2/Si substrates by a sol–gel method. The BNT thin films processed at a low annealing temperature of ∼600 °C showed good ferroelectric properties. The randomly oriented BNT single phases and the improved ferroelectric properties were confirmed by X-ray diffraction and polarization–electric field hysteresis loops, respectively. The remanent polarization of the BNT thin films is 64 μC/cm2, which is larger than that of Bi3.25La0.75Ti3O12 (BLT) thin films. After 1010 read/write switching cycles, the effective non-volatile charges showed no polarization fatigue. Regardless of the low annealing temperature of 600 °C, the BNT thin films had good ferroelectric properties with high remanent polarizations and strong fatigue resistances. PACS 77.84.Dy  相似文献   

9.
Second harmonic generation coefficients of GaN and AlxGa1–xN (x=0.08) thin films deposited by MOCVD on a sapphire 0001 substrate were deduced through the standard Maker fringes method. Measurements were performed at =1064 nm using a Nd:YAG Q-Switched laser. The measured ratio between the d33 and d31 coefficients allowed one to retrieve information on the degree of crystallinity of the thin film samples that was found to be higher in thicker films. The presence of tiny oscillations in the SHG detected signal as a function of the incidence angle of the fundamental beam on the samples is discussed and related to the reflectance at the sample-air interfaces. Finally, nonlinear coefficients for three AlxGa1–xN/GaN multiple quantum well (MQW) samples (x=0.08 and x=0.15) were determined and compared to the values obtained for GaN crystalline thin films. PACS 42.65.Ky, 78.66.Fd, 78.67.De, 78.67.Pt  相似文献   

10.
Ba(Zr0.2Ti0.8)O3 (BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a pulsed laser deposition process. The BZT thin films directly grown on annealed and un-annealed Pt/Ti/SiO2/Si substrates exhibited random and high (100) orientations, respectively. The dielectric constant of a 400-nm-thick BZT film with (100) orientation was 331, which was higher than that of a BZT film with random orientation (∼236). This result is attributed to the fact that the polar axis of the (100)-oriented films was more tilted away from the normal to the film surface than that of the randomly oriented films. Also, the tunabilities of BZT thin films with random and (100) orientations were ∼50% and ∼59% at an applied field of 400 kV/cm, respectively. Improved tunability has been attributed to the (100) texture of the film leading to an enhancement of the in-plane-oriented polar axis. PACS 77.22.-d; 77.55.+f; 77.80.-e; 77.84.-s  相似文献   

11.
CaCu3Ti4O12 (CCTO) thin films were grown by pulsed laser deposition on Pt and La0.9Sr1.1NiO4 (LSNO) bottom electrodes. The electrical characteristics of the CCTO/Pt and CCTO/LSNO Schottky junctions have been analyzed by impedance spectroscopy, capacitance–voltage (C–V) and current–voltage (I–V) measurements as a function of frequency (40 Hz–1 MHz) and temperature (300–475 K). Similar results were obtained for the two Schottky diodes. The conduction mechanism through the Schottky junctions was described using a thermionic emission model and the electrical parameters were determined. The strong deviation from the ideal I–V characteristics and the increase in capacitance at low frequency for ?0.5 V bias are in agreement with the presence of traps near the interfaces. Results point toward the important effect of defects generated at the interface by deposition of CCTO.  相似文献   

12.
Nb-Pt co-doped TiO2 and the hybrid SWCNTs/Nb-Pt co-doped TiO2 thin films have been prepared by the sol–gel spin-coating process for gas-sensor fabrication. Field emission scanning electron microscope (FE-SEM, TEM and X-ray diffraction (XRD) characterizations indicated that the SWCNTs inclusion did not affect the morphology of the TiO2 thin film and the particle size. Additionally, the SWCNTs were well embedded in the TiO2 matrix. The gas-sensing properties of Nb–Pt co-doped TiO2 thin films with and without SWCNTs inclusion were investigated. The hybrid sensors with the inclusion of different SWCNTs contents are examined to elucidate the effect of SWCNTs content on the gas-sensing properties. Experimental results revealed that the responses to ethanol of Nb–Pt co-doped TiO2 sensors with SWNCTs inclusion increase by factors of 2–5 depending on the operating temperature and the ethanol concentration, compared to that of the sensor without SWCNTs inclusion. Moreover, all hybrid sensors can operate with high sensitivity and stability at a relatively low operating temperature (<335 °C). The responses of the hybrid sensors are greatly affected by SWCNTs content inclusion. The optimized SWCNTs content of 0.01% by weight was obtained for our experiment. The improved gas-sensing performance should be attributed to the additional formation of the p/n junction between SWCNTs (p-type) and TiO2 (n-type).  相似文献   

13.
Intrinsic epitaxial zinc oxide (epi-ZnO) thin films were grown by laser-molecular beam epitaxy (L-MBE), i.e., pulsed laser deposition (PLD) technique using Johnson Matthey “specpure”-grade ZnO pellets. The effects of substrate temperatures on ZnO thin film growth, electrical conductivity (σ), mobility (μ) and carrier concentration (n) were studied. As well as the feasibility of developing high quality conducting oxide thin films was also studied simultaneously. The highest conductivity was found for optimized epi-ZnO thin films is σ=0.06×103 ohm−1 cm−1 (n-type) (which is almost at the edge of semiconductivity range), carrier density n=0.316×1019 cm−3 and mobility μ=98 cm2/V s. The electrical studies further confirmed the semiconductor characteristics of epi-n-ZnO thin films. The relationship between the optical and electrical properties were also graphically enumerated. The electrical parameter values for the films were calculated, graphically enumerated and tabulated. As a novelty point of view, we have concluded that without doping and annealing, we have obtained optimum electrical conductivity with high optical transparency (95%) for as deposited ZnO thin films using PLD. Also, this is the first time that we have applied PLD made ZnO thin films to iso-, hetero-semiconductor–insulator–semiconductor (SIS) type solar cells as transparent conducting oxide (TCO) window layer. We hope that surely these data be helpful either as a scientific or technical basis in the semiconductor processing.  相似文献   

14.
Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on Pt/Ti/SiO2/Si and indium-tin-oxide (ITO)-coated glass substrates at room temperature by pulsed laser deposition. These thin films were amorphous with uniform thickness. Excellent dielectric characteristics have been confirmed. The amorphous BErT thin films deposited on the Pt/Ti/SiO2/Si and ITO-coated glass substrates exhibited almost the same dielectric constant of 52 with a low dielectric loss of less than 0.02 at 1 kHz. Meanwhile, the dielectric properties of the thin films had an excellent bias voltage stability and thermal stability. The amorphous BErT thin films might have potential applications in microelectronic and optoelectronic devices.  相似文献   

15.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

16.
Silicon dioxide (SiO2) thin films were deposited on BK7 substrates by pulsed laser deposition (PLD) method using ceramic SiO2 targets (C-SiO2-Ts), which was sintered by solid state sintering. The reason for using C-SiO2-T instead of the silicon target is to reduce the oxygen-deficiency phenomenon in deposited SiO2 thin films. The influence of substrate-temperatures, oxygen-pressures and oxygen-plasma-assistance on the properties of synthesized films was studied. X-ray diffraction, atomic force microscopy, ultraviolet–visible–near-infrared scanning spectrophotometry were used to characterize the crystallinity, morphology and optical properties of deposited films. Results show that the root-mean-square roughness of films increased with the increase of oxygen-pressure, substrate-temperature and with the employment of oxygen-plasma. The transmittance of films increased with the increase of oxygen-pressure and decreased with the increase of substrate-temperature and with the employment of oxygen-plasma. Stoichiometric SiO2 thin film with high optical quality was synthesized at room-temperature and 20 Pa oxygen-pressure using C-SiO2-T.  相似文献   

17.
A conductive material, Pb2Ru2O7-x (PRO), containing Pb in a cubic structure was introduced into a Pt/PZT interface in an attempt to improve the ferroelectric properties of PZT films. PRO and PZT films were prepared by rf magnetron sputtering and chemical solution deposition, respectively. The resistivity of PRO thin films in a hybrid-type electrode (PRO/Pt) structure was approximately 35–45 μΩ·cm and the surface roughness remained constant with increasing annealing temperature. The PRO interlayers suppressed the loss of Pb in PZT layers by diffusion to the Pt/PZT interface. The increase in remanent polarization was largely dependent on the PRO interlayers inserted at the bottom-Pt/PZT interface rather than at the top-Pt/PZT interface. In addition, the leakage-current behavior of PZT films in a sandwich structure was improved substantially compared to the case of PRO interlayers only at the bottom-Pt/PZT interface. Thus, the PRO interlayers play an important role in improving the ferroelectric properties of PZT thin films for use in nonvolatile memory device applications. PACS 68.55.-a; 73.40.Rw; 73.61.Ng; 77.55.+f; 81.15.Cd  相似文献   

18.
The thermal stability and the electrical properties of HfO2 and Hf–aluminate films prepared by the pulsed laser deposition technique have been investigated by X-ray diffraction, differential thermal analysis, capacitance–voltage correlation, leakage-current measurements and high-resolution transmission electron microscopy observation, respectively. A crystallization transformation from HfO2 amorphous phase to polycrystalline monoclinic structure occurs at about 500 °C. In contrast, the amorphous structure of Hf–aluminate films remains stable at higher temperatures up to 900 °C. Rapid thermal annealing at 1000 °C for 3 min leads to a phase separation in Hf–aluminate films. Tetragonal HfO2(111) is predominant, and Al2O3 separates from Hf–aluminate and is still in the amorphous state. The dielectric constant of amorphous HfO2 and Hf–aluminate films was determined to be about 26 and 16.6, respectively, by measuring a Pt/dielectric film/Pt capacitor structure. A very small equivalent oxide thickness (EOT) value of 0.74 nm for a 3-nm physical thickness Hf–aluminate film on a n-Si substrate with a leakage current of 0.17 A/cm2 at 1-V gate voltage was obtained. The interface at Hf–aluminate/Si is atomically sharp, while a thick interface layer exists between the HfO2 film and the Si substrate, which makes it difficult to obtain an EOT of less than 1 nm. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

19.
Lead free Ba0.92Ca0.08Ti0.95Zr0.05O3 (BCZT) thin films were deposited on Pt/Ti/SiO2/Si and LaNiO3(LNO)/Pt/Ti/SiO2/Si substrates by a sol–gel processing technique, respectively. The effects of substrate on structure, dielectric and piezoelectric properties were investigated in detail. The BCZT thin films deposited on LNO/Pt/Ti/SiO2/Si substrates exhibit (100) orientation, larger grain size and higher dielectric tunability (64%). The BCZT thin films deposited on Pt/Ti/SiO2/Si exhibit (110) orientation, higher Curie temperature (75 °C), better piezoelectric property (d33 of 50 pm/V) and lower dielectric loss (0.02). The differences in dielectric and piezoelectric properties in the two kinds of oriented BCZT films should be attributed to the difference of structure, in-plane stress and polarization rotation in orientation engineered BCZT films.  相似文献   

20.
YBa2Cu3O7-x thin films were deposited by laser ablation using KrF excimer laser. In deposition on polycrystalline ZrO2/(1–102) sapphire substrates influence of deposition conditions on film properties were studied. Zero resistance temperatureT z of 83 K of epitaxially grown YBaCuO films on poly-ZrO2/sapphire substrates was reached. Epitaxially grown yttria stabilized zirconia (YSZ) buffer layers were deposited by laser ablation on (1–102) sapphire substrates. On YSZ/sapphire, SrTiO3 and NdGaO3 substrates, temperatures Tz between 89–90 K were measured. Results of X-ray diffraction and SEM are also presented.We would like to express our thanks to L. Cibulka, L. and L. Rouek, and J. Stránský for their efficient help during the solution of technological problems connected with the construction of experimental apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号