首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Three coordination complexes based on manganese, namely Mn(phen)(5-Br-ipa) (1), Mn(phen)(5-NO2-ipa) (2), and [Mn(phen)2(3,4-H2dczpb)]·H2O (3) (phen = 1,10-phenanthroline; 5-Br-ipa = 5-bromoisophthalic acid; 5-NO2-ipa = 5-nitroisophthalic acid; 3,4-H4dczpb = 3,4-dicarboxyl-(3′,4′-dicarboxylazophenyl)benzene), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and UV–Vis diffuse reflection spectroscopy. The photocatalytic efficiencies of the complexes for the decomposition of methylene blue under UV irradiation were also investigated. These complexes show 2D sheet, 1D chain and 0D discrete structures due to the different coordination environments of the Mn(II) centers and the number of phen ligands.  相似文献   

2.
Three complexes [Zn2(IPA)2(phen)4](HIPA)2(NO3)2·H2O (1), {[Zn(IPA)2(bipy)]·3H2O}n (2), and {[Mn(IPA)2(bipy)(H2O)]·2H2O}n (3) (HIPA = indole-3-propionic acid, phen = 1,10-phenanthroline, bipy = 4,4′-bipyridine) were synthesized and characterized by physico-chemical and spectroscopic methods. Complex 1 displays a zero-dimensional structure, whilst 2 and 3 show one-dimensional chains, which are linked into supramolecular networks through hydrogen bonding interactions and/or π···π stacking interactions. The luminescence properties of complexes 1 and 2 were investigated.  相似文献   

3.
Four oxovanadium(IV) complexes, namely [VO(desa-met)(phen)]·MeOH·2H2O (1) (desa-met = Schiff base derived from 4-(diethylamino)salicylaldehyde and dl-methionine, phen = 1,10-phenanthroline), [VO(o-van-met) (phen)]·MeOH·CH2Cl2·3H2O (2) (o-van-met = Schiff base derived from o-vanillin and dl-methionine), [VO(dtbs-napa)(phen)]·2H2O (3) (dtbs-napa = Schiff base derived from 3,5-di-tert-butyl salicylaldehyde and 3-(1-naphthyl)-l-alanine) and [VO(hyna-napa)(phen)]·1.5H2O (4) (hyna-napa = Schiff base derived from 2-hydroxy-1-naphthaldehyde and 3-(1-naphthyl)-l-alanine), were synthesized and characterized by IR, HRMS, UV–vis spectra, molar conductance and single-crystal X-ray diffraction (XRD). X-ray structural analysis showed that the V(IV) atoms in all four complexes are six-coordinated in a distorted octahedral environment. In the crystals of complexes 1 and 2, ππ stacking interactions together with hydrogen bonds connect the molecular units into 2D networks. Meanwhile, CH–π stacking interactions are observed between the aromatic rings in the crystals of 1 and 4, while the ππ stacking interactions between aromatic rings in the crystals of 2 and 3 are arranged with a face-to-face mode. The in vitro anticancer activities of these complexes against A-549 and HeGp2 cells were tested by MTT assay.  相似文献   

4.
Three Ag(I) coordination polymers [Ag(L1)]·(H3bptc)·H2O (1), [Ag2(L2)(oba)]·H2O (2), and [Ag2(L2)2]·(H2bptc) (3) [L1 = 1,4-bis(3,5-dimethylpyrazole)butane, L2 = 1,4-bis(2-methylbenzimidazole)butane, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid, H2oba = 4,4′-oxybis(benzoic acid)] constructed from N-containing ligands with different flexibilities and organic carboxylates as co-ligands have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis. All three complexes display 1D chain structures, which are further extended into 2D supramolecular networks via non-classical C–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of the complexes 13 have been investigated in detail. Complexes 2 and 3 reveal promising catalytic activities for the degradation of methyl orange in a Fenton-like process.  相似文献   

5.
Three Co(II) coordination polymers, namely, {Co(btbb)0.5(ndc)(H2O)}n (1), {[Co(btbb)(bpdc)]·1.5H2O}n (2), and {[Co(btbp)2(3-npa)]·2H2O}n (3) (btbb = 1,4-bis(thiabendazole)butane, btbp = 1,3-bis(thiabendazole)propane, H2ndc = 2,6-naphthalenedicarboxylic acid, H2bpdc = 4,4′-biphenyldicarboxylic acid and 3-H2npa = 3-nitro phthalic acid) were synthesized under hydrothermal conditions. Their X-ray crystal structures show that complexes 1 and 2 both have 2D uninodal 3-connected hcb (honeycomb) structures. Complex 1 is further extended into a threefold interpenetrating 3D 4,4-connected mog (moganite) supramolecular architecture with the point symbol of {4.64.8}2{42.62.82} by O–H···O hydrogen bonding interactions. Complex 2 shows a 3D supramolecular framework involving π···π stacking interactions. Complex 3 features a uninuclear structure, which is further assembled into an ordered 2D hydrogen-bonded-driven pattern with O–H···O and O–H···N hydrogen bonding interactions. The fluorescence spectra and photocatalytic properties of complexes 13 for degradation of methyl orange were investigated.  相似文献   

6.
Four Ag(I) coordination polymers, formulated as [Ag(L1)(tpa)0.5] n (1), {[Ag(L2)(ndc)0.5]·0.5H2ndc} n (2), [Ag(L3)0.5(ndc)0.5] n (3) and {[Ag(L3)]·H3bptc} n (4) (L1 = 4,4′-bis(pyrazole-1-ylmethyl)-biphenyl, L2 = 4,4′-bis(3,5-dimethylpyrazol-1-ylmethyl)-biphenyl, L3 = 1,4-bis(3,5-dimethylpyrazol-1-ylmethyl)benzene, H2tpa = terephthalic acid, H2ndc = 2,6-naphthalenedicarboxylic acid, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 features the rare binodal (4,4)-connected 2D 4,4L10 topological network with a point symbol of {32·4.62·7}2{32·62·72}. Complex 2 has a folded ladder-like chain structure, which is further extended into a 3D supramolecular network via O–H···O hydrogen bonding and π···π stacking interactions. Complexes 3 and 4 both possess 1D zigzag chain structures. Complex 3 is further extended into a binodal (3,4)-connected network with the point symbol of {4.84·10}{62·82}2 by Ag···O weak interactions, while complex 4 is further connected through O–H···O hydrogen bonding and π···π interactions to afford a 2D supramolecular structure. The photoluminescence spectra and photocatalytic properties of these complexes for degradation of methylene blue and methyl orange are reported.  相似文献   

7.
Three cobalt(II) coordination polymers {[Co(L1)(nda)(H2O)2]·2H2O} n (1), [Co(L2)(tbi)(H2O)] n (2) and [Co(L2)(bpdc)(H2O)] n (3) (L1 = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, L2 = 1,3-bis(benzimidazol-1-yl)-2-propanol, H2nda = 2,6-naphthalenedicarboxylic acid, H2tbi = 5-tert-butyl isophthalic acid and H2bpdc = 4,4′-biphenyldicarboxylic acid) were synthesized and characterized by physicochemical and spectroscopic methods. Complex 1 exhibits a 1D loop-like structure, which is further extended into a 3D 3,3,4T31 network through two O–H···O hydrogen bonding interactions. Complex 2 displays a 1D ladder-like chain, arranged into a 2D supramolecular network with 3,3,4L34 topology via classical O–H···O hydrogen bonding interactions, whereas complex 3 features a 2D 3,4L13 layer structure and further assembles into a 3D framework with a twofold interpenetrating sqc65 topology through O–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of these complexes for the degradation of Congo red in a Fenton-like process have been investigated.  相似文献   

8.
A series of lanthanide selenidogermanates (H3O)[Tm(teta)2][Ge2Se6] (1, teta = triethylenetetramine) and [Ln(teta)(tren)Cl]2[Ge2Se6](en) {en = ethylenediamine, tren = N,N,N- tris(2-aminoethyl)amine, Ln = Pr (2a), Nd (2b), Sm (2c), Eu (2d), Gd (2e), Tb (2f)}were prepared under mild solvothermal conditions and structurally characterized. 1 contains isolated [Tm(teta)2]3+ ions, protonated H3O+ ions and dimeric [Ge2Se6]4? anions, while 2af are composed of [Ln(teta)(tren)Cl]3+ ions, dimeric [Ge2Se6]4? anions and free en molecules. The lighter lanthanide ions (Pr–Tb) adopt a distorted tricapped trigonal prism with the nine-coordinated number, and the heavier Tm3+ ion adopts a distorted bicapped trigonal prism with the eight-coordinated number. Their band gaps in the range of 1.52–1.86 eV are derived from optical absorption spectra.  相似文献   

9.
Three ternary copper(II) complexes [Cu(L1)(phen)] (1), [Cu(L2)(phen)] (2), and [Cu(L3)(phen)]·2H2O (3) (L1 = 4-fluoro-2-(picolinamido)benzoic acid, L2 = 4,5-difluoro-2-(picolinamido)benzoic acid, L3 = 4,5-difluoro-2-((2-hydroxybenzylidene)amino)benzoic acid, phen = 1,10-phenanthroline) have been synthesized and characterized by physicochemical and spectroscopic methods. In addition, X-ray crystallography showed that the Cu atoms in each of the complexes are five-coordinate, adopting distorted square pyramidal or trigonal bipyramidal geometries. The interactions of the complexes with calf-thymus DNA were investigated by UV absorption, fluorescence spectroscopy and viscosity measurements. In addition, the complexes were screened for in vitro cytotoxicity against A549 (human pulmonary carcinoma cells), Jurkat (human T lymphocyte cell line) and HepG-2 (human liver hepatocellular carcinoma cells); these experiments showed that complex 3 exhibited the most effective cytotoxicities (IC50 = 1.224–7.099 µM). Antibacterial studies revealed that complex 3 also exhibited highest activity, consistent with the DNA binding affinities.  相似文献   

10.
Three coordination polymers, namely {[Ni(L1)(nip)(H2O)]·2H2O} n (1), [Co(L2)(tbip)] n (2), and {[Co2(L3)2(bptc)]·3H2O} n (3) (L1 = 1,4-bis(5,6-dimethylbenzimidazole)butane, L2 = 1,4-bis(5,6-dimethylbenzimidazole)-2-butylene, L3 = 1,3-bis(5,6-dimethylbenzimidazole)propane, H2nip = 5-nitro-isophthalic acid, H2tbip = 5-tert-butyl-isophthalic acid, H4bptc = biphenyl-3,3′,4,4′-tetracarboxylic acid), have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as by single-crystal X-ray diffraction analysis. Complexes 1 and 2 both feature a two-dimensional (4,4) layer with (44 × 62) topology. Complex 3 possesses a uninodal 4-connected 2D htb network. The fluorescence spectra and catalytic properties of the complexes for the degradation of methyl orange by sodium persulfate in a Fenton-like process are reported.  相似文献   

11.
Four novel coordination polymers, [Zn(HL1)2(phen)2]·2CH3OH·2H2O (1), [ZnCl(HL1)(4,4′-bipy)0.5] n (2), [Cd(HL1)(L2)0.5(2,2′-bipy)2]·3H2O (3), [Zn(L3)0.5(N3)1.5(phen)] n (4) (H2L1 = 9-(1H-tetrazole-5-yl)-10-carboxyl anthracene, H2L2 = 9,10-di-(1H-tetrazole-5-yl) anthracene, HL3 = 9-(1H-tetrazole-5-yl)-10-cyan anthracene, 1,10-phen = 1,10-phenanthroline, 4,4′-bipy = 4,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine), have been constructed by in situ ligands synthesis system. The formation of tetrazole-based ligands H2L1, H2L2 and H2L3 involves the in situ Sharpless [2 + 3] cycloaddition reaction between 9,10-dicyanoanthracene (DCA) and NaN3 in the presence of Zn2+/Cd2+ ions as Lewis-acid catalysts under hydro/solvothermal conditions. At the same time, there is also another in situ carboxyl ligand synthesis reaction by hydrolysis from nitrile in compounds 1 and 2. The four compounds have been characterized by elemental analysis, IR and single-crystal X-ray diffraction analysis. Compound 1 exhibits a butterfly-shaped mononuclear structure. Compound 2 represents a 2D framework constructed by six-membered {Zn6} rings as secondary building units (SBUs). Compound 3 presents a dinuclear {Cd2} structure with two butterflies “flying side by side” fashion. While compound 4 displays a 1D chain structure based on a dinuclear {Zn2} SBUs. Moreover, the luminescence properties of 1–4 have been also investigated.  相似文献   

12.
Three coordination polymers have been obtained by hydrothermal synthesis, namely [Zn(imip)(H2O)2]·0.5H2O (1), [Co(imip)(H2O)2]·0.5H2O (2), and [Cd2(imip)2(H2O)3] (3) [H2imip = 5-(1H-imidazol-1-yl) isophthalic acid]. The coordination polymers were characterized by IR spectra, elemental analysis, powder X-ray diffraction, and thermogravimetric analysis. Furthermore, single-crystal X-ray analysis reveals that they have 2D structures, which are extended into 3D networks via O–H···O hydrogen-bonding interactions. The luminescent properties of these coordination polymers were investigated.  相似文献   

13.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

14.
In this paper, self-assembly reactions of copper(II) ions, methoxybenzoate isomers and 2,2′-bipyridine yield two copper-oxygen polynuclear complexes: [Cu2(bpy)2(2-C8H7O3)3]·(2-C8H7O3)·14H2O 1, [Cu4(bpy)4(H2O)(OH)4]·4(3-C8H7O3)·17H2O 2, and a simple mononuclear complex [Cu(bpy)(H2O)(4-C8H7O3)2] 3. (bpy = 2,2′-bipyridine, C8H7O3 = methoxybenzoate ion). Single crystal X-ray diffraction analyses reval that compound 1 is a dinuclear copper(II) complex which bridged by three carboxylate groups, and 2 presents a discrete step-like tetra-nuclear copper Cu4O4 core. Compound 3 shows a square pyramidal mononuclear geometry. The magnetic susceptibility of complex 1 measured from 2 to 300 K, revealed an antiferromagnetic interaction between the Cu(II) ions. Furthermore, the results about IR spectra and thermal analyses were discussed.  相似文献   

15.
Six new complexes [Mn8(μ4-O)4(phpz)8(MeOH)4]·(MeOH)(H2O) (1) [Co2(HphpzH)(Hphpz)2(phpz)2]·4(MeOH) (2), Ni(Hphpz)2 (3), [Ni(Hphpz)2]·H2O (4), [Zn4(pzpy)4Cl4] (5) and [Cu2(pzpy)2(HCO2)2(H2O)2] (6) have been synthesized by hydrothermal reactions of MCl2·4H2O (M = Mn, Co, Ni, Zn or Cu) with 5-(2-hydroxyphenyl)-3-pyrazole (HphpzH) or 2-(1H-pyrazol-3-yl)pyridine (Hpzpy). The complexes were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Complex 1 is an octanuclear Mn(III) cluster, complexes 2 and 6 are binuclear Co(III) and Cu(II), respectively, complexes 3 and 4 are isomorphous mononuclear species, while complex 5 is a tetranuclear Zn(II) cluster. The magnetic behavior of complex 1 was investigated. Magnetic susceptibility measurements revealed antiferromagnetic exchange interactions between the metal centers in the clusters. The luminescence properties of the complexes were investigated at room temperature in the solid state.  相似文献   

16.
Three new zinc(II) complexes of [Zn(6-mbipy)(η2-NO3)2] (1), [Zn(6,6′-dmbipy)(η2-NO3)2] (2) and [Zn(5,5′-dmbipy)(η2–NO3)(H2O)2](NO3).H2O (3) were prepared from the reaction of 6-methyl-2,2′-bipyridine (6-mbipy), 6,6′-dimethyl-2,2′-bipyridine (6,6′-dmbipy) and 5,5′-dimethyl-2,2′-bipyridine (5,5′-dmbipy) with Zn(NO3)2·4H2O in methanol, respectively. These three complexes were thoroughly characterized by elemental analysis, thermal gravimetric analysis, differential thermal analysis, infrared, UV–Vis, 1H NMR and 13C{1H} NMR spectroscopy, and their structures have all been determined by the single-crystal X-ray diffraction. The luminescence spectra of the title complexes show that the intensity of their emission bands is stronger than the bands for the free ligands.  相似文献   

17.
The reactions of aromatic dicarboxylic acids and methyl-functionalized 4,4′-bipyridine ligands with metal salts under hydrothermal conditions generated four structurally diverse cobalt(II), zinc(II) and cadmium(II) coordination polymers, [Co(CH3-BDC)(dmbpy)0.5] n (1), [Cd(OH-HBDC)2(dmbpy)] n (2), [Zn(NDC)(dmbpy)] n , (3) and {[Cd(DBA)(dmbpy)0.5]·2H2O} n (4) (CH3–H2BDC = 5-methylisophthalic acid, OH–H2BDC = 5-hydroxyisophthalic acid, H2NDC = 1,4-naphthalenedicarboxylic acid, H2DBA = 4,4′-methylenedibenzoic acid, dmbpy = 2,2′-dimethyl-4,4′-bipyridine). All four complexes have been structurally characterized by X-ray crystallography. Complex 1 shows a 3D jsm topology structure with two 1D channels parallel to the a and b axes. Complex 2 has a zigzag chain in which the OH-HBDC ligands point alternately up and down. Complexes 3 and 4 show 2D (4,4) networks when the dinuclear metal centers and their ligands are regarded as nodes and linkers, respectively. Complex 3 also shows twofold interpenetration with 1D channels along the b axis. Two nets of complex 4 interlock in parallel, giving rise to a polycatenated layer (2D → 2D). Thermogravimetric and chemical stabilities, magnetic and luminescent properties of these complexes were investigated.  相似文献   

18.
Two polymeric frameworks, [Zn(Dpb)(Oba)] n (Ι) and [Cd(Dpb)(2,6-Pda)H2O] n · nH2O (II) (Dpb = 1,4-bis(pyridin-3-ylmethoxy)benzene, H2Oba = 4,4'-oxybis(benzoic acid), 2,6-H2Pda = 2,6-pyridyl-dicarboxylate), have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction method (CIF files CCDC 1488269 (Ι), 1488270 (II)). Complex Ι is a 2D layer structure, which is constructed from 1D double chain. Complex II is a 1D chain. The luminescent properties of Ι, II have been investigated with fluorescent spectra in the solid state, I and II displayed a strong fluorescent emission at room temperature.  相似文献   

19.
The synthesis, an improved refined crystal and molecular structure re-determination, and the thermal decomposition behavior of two Zn(II) derivatives of isocinchomeronic acid (2,5-pyridinedicarboxylic acid or H22,5-pydc) are presented. [Zn(2,5-pydc)(H2O)3Zn(2,5-pydc)(H2O)2]2 (1) crystallizes in the triclinic P-1 space group with a = 7.106(2), b = 11.450(2), c = 11.869(1) Å, α = 107.29(1), β = 104.08(1), γ = 90.32(2)°, and Z = 2. [Zn(2,5-pydc)(H2O)2] · H2O (2) is orthorhombic (P212121 space group), with a = 7.342(1), b = 9.430(1), c = 13.834(2) Å, and Z = 4. The structures were refined to agreement R 1-factors of 0.0315 (1) and 0.0336 (2). Complex (1) is arranged as molecular Zn4(2,5-pydc)4(H2O)10 tetramers, the cages of which define channels that remain unblocked by anions. Compound (2) is polymeric with Zn(2,5-pydc)(H2O)2 and Zn(2,5-pydc)(H2O)3 units linked through bridging ligands. Both compounds were synthesized under mild conditions in aqueous media, without need to resort to hydrothermal media. Changing the pH from 4.51 to 5.75 suffices to direct the chemical processes toward the orthorhombic compound rather than to the triclinic one.  相似文献   

20.
Tetrazole–carboxylates with both rigid tetrazole rings and flexible carboxylate groups provide excellent building blocks for the construction of diverse coordination architectures. We have selected a bistetrazole–carboxylate, H2btzphda [H2btzphda = 1,3-bis(tetrazol-5-yl)benzene-N2,N2′-biacetic acid] and a tristetrazole–carboxylate, H3ttzphta [H3ttzphta = 1,3,5-tris(tetrazol-5-yl)benzene-N2,N2′,N2′′-trisacetic acid] to construct new coordination compounds with CoCl2·6H2O, [Co(btzphda)(CH3OH)(H2O)2]·H2O (1), [Co3(ttzphta)2(H2O)12]·H2O (2). These coordination compounds were structurally characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. Complex 1 has a two-dimensional layer structure with (4,4) grid topology, while complex 2 has a one-dimensional beaded chain structure. The luminescence spectra of complexes 1 and 2 at room temperature in the solid state show weaker emissions than those of the corresponding free ligands. The thermogravimetric properties of complexes 1 and 2 are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号