首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation of molecular complexes between 2,4,6-trinitrophenol (TNP) and aza-substituted macrocycles diaza-18-crown-6 (DA18C6), tetraaza-14-crown-4 (TA14C4) and cryptand C222 in 1,2-dichloroethane solution was investigated spectrophotometrically and conductometrically. The mole ratio and continuous variations studies based on both physicochemical techniques employed clearly revealed the formation of both 1:1 and 2:1 (TNP:macrocycle) adducts in solution. Formation of the resulting complexes was also confirmed by 1H NMR and IR spectroscopic studies. Formation constants of the resulting complexes were evaluated from computer fitting of the corresponding mole ratio data. Stability of the resulting complexes was found to vary in the order C222 approximately TA14C4 > DA18C6.  相似文献   

2.
A large number of derivatives of the diaza-18-crown-6 ligand have been synthesized and characterized. These derivatives have different alkyl or aryl side arms at the nitrogen donor atoms of the macrocyclic diazacrown ether. In some side chains additional donor atoms are available. These diazacrown ethers are used as ligands for the complexation of AgI in MeOH. The complexation reactions have been studied using potentiometric and calorimetric methods. The thermodynamic data show the absence of a lariat effect. The increase of the values of the reaction enthalpies are due only to changes in solvation of the different ligands.  相似文献   

3.
A conductance study of the interactionbetween Tl+ ion and 18-crown-6 (18C6),dicyclohexano-18-crown-6 (DC18C6), benzo-18-crown-6(B18C6), diaza-18-crown-6 (DA18C6),dibenzyldiaza-18-crown-6 (DBzDA18C6) andhexaaza-18-crown-6 (HA18C6) indimethylformamide-acetonitrile mixtures was carriedout at various temperatures. The formation constantsof the resulting 1 : 1 complexes were determined fromthe molar conductance-mole ratio data and found tovary in the order HA18C6 > DA18C6 > DBzDA18C6 >18C6 > DC18C6 > B18C6. The enthalpy and entropy ofthe complexation reactions were determined from thetemperature dependence of the formation constants.  相似文献   

4.
1H NMR spectroscopy was used to investigate the stoichiometry and stability of the drug ketamine cation complexes with some crown ethers, such as 15-crown-5 (15C5), aza-15-crown-5 (A15C5), 18-crown-6 (18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6), dibenzyl-diaza-18-crown-6 (DBzDA18C6) and cryptant [2,2,2] (C222) in acetonitrile (AN), dimethylsulfoxide (DMSO) and methanol (MeOH) at 27 degrees C. In order to evaluate the formation constants of the ketamine cation complexes, the CH3 protons chemical shift (on the nitrogen atom of ketamine) was measured as function of ligand/ketamine mole ratio. The formation constant of resulting complexes were calculated by the computer fitting of chemical shift versus mole ratio data to appropriate equations. A significant chemical shift variation was not observed for 15C5 and 18C6. The stoichiometry of the mono aza and diaza ligands are 1:1 and 1:2 (ligand/ketamine), respectively. In all of the solvents studied, DA18C6 formed more stable complexes than other ligands. The solvent effect on the stability of these complexes is discussed.  相似文献   

5.
New derivatives of diaza-18-crown-6 have been prepared by the aminomethylation of N-alkylsulfonamides under the action of N,N-bismethoxymethyldiaza-18-crown-6.For Communication 23, see [1].Deceased.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 413–415, March 1986.  相似文献   

6.
Kim JS  Lee CH  Han SH  Suh MY 《Talanta》1997,45(2):437-444
Stability constants of some lanthanides with K22DAP (diaza-18-crown-6-diisopropionic acid) were determined by potentiometric titration method. The logarithmic values of these constants for La(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Er(III), and Lu(III) are 11.14, 11.43, 11.78, 11.74, 11.95, 12.09, 11.49, and 10.88, respectively. Solvent extraction studies were carried out on the K22DAP complexes of La(III), Nd(III) and Lu(III) using TTA (thenoyltrifluoroacetone) as an extractant in different diluents. It appears that nitrobenzene, a diluent with high dielectric constant, favors the extraction of the complexes. Extraction rates of the K22DAP complexes of lanthanides were investigated at pH 5.5 and 8.0 with TTA in chloroform. The rates of extraction are found to be dependent upon the nature of the extracted species. Competitive extractions were carried out to see if selective extractions could be achieved.  相似文献   

7.
The spectrophotometric kinetic charge–transfer complex formation of iodine trichloride (ICl3) with Dibenzo-18-crown-6 (DB18C6), Dicyclohexyl-18-crown-6 (DC18C6) has been studied in chloroform; dichloromethane and propylene carbonate solutions at different temperatures. The results indicated immediate formation of an electron donor–electron acceptor complex; which is followed by two relatively slow consecutive reactions. The pseudo-first-order rate constants for the formation of the ionic intermediate and the final product have been evaluated at various temperatures by computer fitting of the absorbance–time data to appropriate equations. The influences of both the crown’s structure and the solvent properties on the formation of donor–electron acceptor complexes and the rates of subsequent reactions are discussed.  相似文献   

8.
Abstract

Complex formation and stability constants between typical and atypical diaza-15-crown and diaza-18-crown ethers with silver(I) were determined in methanol, acetonitrile and propylene carbonate by the potentiometric method. In two of the diaza crown ethers, AA-diaza-15 and AA-diaza-18-crown, two nitrogens in the macrocyclic ring replaced two consecutive oxygens instead of two opposite ones in the two other diaza crown ethers. It was found that complexes of 1:1 and 1:2 metal-to-ligand stoichiometry were formed. The solvent composition and cavity size of crown ethers significantly influences the stability constants of complexes. AA-diaza-15 and AA-diaza-18-crown ethers were examined for comparison with diaza-15-crown and diaza-18-crown ethers. AA-diaza crown ethers formed less stable 1:1 metal-to-ligand complexes with silver(I) than typical diaza crown ethers but their ability to form 1:2 metal-to-ligand complexes was stronger. The energetically most favorable structures of the 1:1 metal-to-ligand complexes were calculated and visualized by the AM1d method at the semiempirical level of theory.  相似文献   

9.
The complexation reaction between UO2 2+ cation with macrocyclic ligand, 18-crown-6 (18C6), was studied in acetonitrile–methanol (AN–MeOH), nitromethane–methanol (NM–MeOH) and propylencarbonate–ethanol (PC–EtOH) binary mixed systems at 25 °C. In addition, the complexation process between UO2 2+ cation with diaza-18-crown-6 (DA18C6) was studied in acetonitrile–methanol (AN–MeOH), acetonitrile–ethanol (AN–EtOH), acetonitrile–ethylacetate (AN–EtOAc), methanol–water (MeOH–H2O), ethanol–water (EtOH–H2O), acetonitrile–water (AN–H2O), dimethylformamide–methanol (DMF–MeOH), dimethylformamide–ethanol (DMF–EtOH), and dimethylformamide–ethylacetate (DMF–EtOAc) binary solutions at 25 °C using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between (18C6) and (DA18C6) with UO2 2+ cation in most cases is 1:1 [M:L], but in some solvent 1:2 [M:L2] complex is formed in solutions. The values of stability constants (log Kf) of (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes which were obtained from conductometric data, show that the nature and also the composition of the solvent systems are important factors that are effective on the stability and even the stoichiometry of the complexes formed in solutions. In all cases, a non-linear relationship is observed for the changes of stability constants (log Kf) of the (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes versus the composition of the binary mixed solvents. The stability order of (18C6 · UO2 2+) complex in pure studied solvents was found to be: EtOH > AN ≈ NM > PC ≈ MeOH, but in the case of (DA18C6 · UO2 2+) complex it was : H2O > MeOH > EtOH.  相似文献   

10.
Complex formation of Mg2+, Ba2+, and Pb2+ perchlorates with 3,3-diphenyl-3H-benzo[f]chromenes containing aza-and diaza-18-crown-6-ether or morpholine fragments was studied. The strong influence of the metal cations on the spectral characteristics of these organic ligands and on the kinetic of photochromic transformations was found. The results obtained were explained by the formation of carbonyl-“ capped” complexes of various structures. Faculte des Sciences de Luminy, Universite de la Mediterranee, UMR 6114 CNRS, 13288 Marseille, France. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 280—287, February, 2006.  相似文献   

11.
The complex formation between Ba(2+) and different diaza-18-crown-6 ligands has been studied using a new spectrophotometric method. In the presence of undissolved solid ligand the concentration of the dissolved ligand increases in salt containing solutions due to complex formation. The change in the total concentration of the dissolved ligand can be monitored by UV-VIS spectrometry if the ligand contains absorbing groups. However, any other method to measure the variation of the ligand concentration in solution, e.g. the total organic carbon content, allows the calculation of the stability constants of the complexes formed. It is not essential for the determination of the stability constant to know the absolute concentration of the ligand in solution. The experimental method described offers some advantages compared with other experimental techniques. The main advantage is that only very small amounts of ligands are needed.  相似文献   

12.
Six new diaza-18-crown-6 ligands each containing two aromatic side arms with responsive functions were prepared. Diaza-18-crown-6 containing two 4-hydroxyazobenzene ( 3 ) or two 4 -hydroxy- 4′ -(dimethyl-amino)azobenzene ( 4 ) substituents were prepared via a one-pot Mannich reaction. Diaza-18-crown-6 containing two benzimidazole ( 5 ), two uracil ( 6 ) or two 9,10-anthraquinone ( 7 ) substituents were prepared by treating the diazacrown with the appropriate chloromethyl-containing compound. Reductive amination using sodium triacetoxyborohydride, diaza-18-crown-6 and ferrocenecarboxaldehyde was used to prepare bisferrocene-substituted diaza-18-crown-6 ( 8 ). Interactions of compounds 3 , 5 , and 6 with Na+, K+, Ba2+, Ag+, and Cu2+ were evaluated by a calorimetric titration technique at 25° in methanol. All three ligands form more stable complexes with Ag+ and Cu2+ ( 5 forms a precipitate with Ag+) than with Na+ and K+. Ligand 5 also forms a highly stable complex with Ba2+.  相似文献   

13.
The charge–transfer (CT) complex of donor antipyrine with Π‐acceptor 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) has been investigated spectrophotometrically in different halocarbon and acetonitrile solvents. The results indicated immediate formation of an electron donor–acceptor complex (DA), which is followed by two relatively slow consecutive reactions. The pseudo–first‐order rate constants for the formation of the ionic intermediate and the final product at various temperatures were evaluated from the absorbance–time data. The activation parameters, viz. activation energy, enthalpy, entropy, and free energy of activation, were computed from temperature dependence of rate constants. The stoichiometry of the complex was found to be 1:1 by Job's method of continuous variation. The formation constants of the resulting DA complexes were determined by the Benesi–Hildebrand equation at four different temperatures. The enthalpies and entropies of the complex formation reactions have been obtained by temperature dependence of the formation constants using Van't Hoff equation. The results indicate that DDQ complexes of antipyrine in all solvents are enthalpy stabilized but entropy destabilized. Both the kinetics of the interaction and the formation constants of the complexes are dependent upon the polarity of the solvents. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 81–91, 2013  相似文献   

14.
The reaction of {[UO2(HCOO)2(H2O)]} with diaza-18-crown-6 (DA18C6 = C12H26O4N2) in aqueous ethanol in the presence of formic acid yields the complexes {[DA18C6H2]·[UO2(HCOO)3]2} (I), [DA18C6H2]·[UO2(HCOO)4] (II), and [DA18C6H2]·(HCOO)2·(H2O)2 (III). The complexes are characterized using IR spectroscopy, chemical analysis, and powder X-ray diffraction. From the comparison of the structural and spectral characteristics of [DA18C6H2]·An2·(H2O)2n (where An = Cl?,NO 3 ? ,HCOO?,HSO 4 ? ; n = 0.1), correlations are derived between the conformation of the [DA18C6H2]2+ units and the conformation-sensitive frequencies. On the basis of these correlations, the conformations of the N+CCO and OCCO units were determined in the diazonia cations of compounds I and II and in [DA18C6H2]·[UO2(NO3)4]; the latter was prepared previously by reacting [UO2(NO3)2(H2O)2]·(H2O)4 with DA18C6 in ethanol in the presence of nitric acid.  相似文献   

15.
Cesium-133 nuclear magnetic resonance spectroscopy was used as a sensitive probe to investigate the stoichiometry and stability of Cs+ ion complexes with aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6) and dibenzylediaza-18-crown-6 (DBzDA18C6) in different binary acetonitrile?Cnitromethane mixtures. In all cases, the exchange between free and complexed cesium ion was fast on the NMR time scale and only a single population average resonance was observed. The 133Cs chemical shift?Cmole ratio data indicated that the cesium ion forms 1:1 cation?Cligand complexes with the investigated aza-crowns in all acetonitrile?Cnitromethane mixtures. The formation constants of the resulting complexes were evaluated from computer fitting of the chemical shift?Cmole ratio data. The stability of the resulting 1:1 complexes with Cs+ were found to vary in the order A18C6 > DBzDA18C6 > DA18C6. In all cases, there is the inverse relationship between the complex stability constants and the amount of acetonitrile in the mixed solvent.  相似文献   

16.
Interaction of 2-aminomethyl-15-crown-5 (AM15C5) with iodine has been investigated spectrophotometrically in chloroform and 1,2-dichloroethane (1,2-DCE) solutions. The observed time dependence of the charge-transfer band and subsequent formation of I(3)(-) in solution were related to the slow transformation of the initially formed 1:1 AM15C5.I(2) outer complex to an inner electron donor-acceptor (EDA) complex, followed by fast reaction of the inner complex with iodine to form a triiodide ion. The pseudo-first-order rate constants were evaluated from the absorbance- and conductivity-time data. The stoichiometry and formation constants of the resulting EDA complexes have also been determined. Thermodynamic parameters, Delta H degrees and Delta S degrees , of the complexes have been determined from the temperature dependence of stability constants by Van't Hoff equation. The results indicate that iodine complexes of AM15C5 in both solvents are enthalpy stabilized but entropy destabilized. The influence of solvent properties on the kinetics and stability of the resulting charge-transfer complexes are discussed.  相似文献   

17.
Diaza-18-crown-6 (1,4,10,13-tetraoxa-7,16-diaza-cyclo-octadecane) selectively precipitates as a 1,4-dihydroxybenzene-complex from a mixture of isomeric phenols and as a 2,6-dihydroxynapthalene-complex from mixtures of isomeric diols. These selective precipitations are discussed in terms of structure and solubility of the host-guest complexes and phenol acidity. The crystal structures of diaza-18-crown-6 with guestsp-nitrophenol (2: 1), 2,4-dinitroaniline (2: 1), 5,5-diethylbarbituric acid (2: 1), salicylaldoxime (2: 1) and 1,4-dihydroxybut-2-yne (1: 1) are reported. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82065 (74 pages).  相似文献   

18.
Nucleophilic substitution in β-chlorovinyl phenyl ketone with diaza-18-crown-6 ether resulting in displacement of the chlorine atom afforded N,N’-bis(3-oxo-3-phenylpropen-1-yl)-1,10-diaza-18-crown-6 ether. The ability of the latter to form complexes with a number of metal cations was studied. However, the complex formation occurs only with the rare-earth cations Ln3+ and Th4+. This fact was demonstrated by UV and 1H NMR spectroscopy of solutions, confirmed by isolations of glassy phases of composition L3M2(NO3)6 · nH2O (M = La, Y, n ≈ 4–7), and supported by IR spectra of these phases in KBr pellets. The formation of complexes with La3+ and Y3+ leads to an increase in fluorescence intensity of the ligand. The stability constants of the 1 : 1 complexes in methanol were evaluated by spectrophotometry. These constants increase with decreasing ionic radius of the cation.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 156–160, January, 2005.  相似文献   

19.
Downie C  Mao JG  Guloy AM 《Inorganic chemistry》2001,40(18):4721-4725
Large bright-red, transparent crystalline plates of [K-(2,2)diaza-[18]-crown-6]K3Ge9-2en are obtained, in high-yield, from a reaction of (2,2)diaza-[18]-crown-6 in toluene with a solution of K4Ge9/potassium metal (K) in ethylenediamine (en). The compound crystallizes in the monoclinic space group P2(1)/m (a = 10.740(1) A, b = 15.812(1) A, c = 12.326(1) A, beta = 114.74 degrees; Z = 2). The crystal structure of [K-(2,2)diaza-[18]-crown-6]K3Ge9-2en features two-dimensional [K3Ge9] layers formed by uncomplexed K(+) cations and Ge94(-) anions. The "not-so-bare" cluster compound features a unique Ge94(-) cluster that exhibits a slightly distorted C(2v) geometry that is closer to D(3h) than the expected C(4v). Use of noncryptand sequestering agents in the isolation of Ge cluster anions from en solutions opens new avenues in understanding important cation-anion interactions in the stability and reactivity of Zintl ions, as well as a viable route to isolating Zintl anions with higher charges per atom.  相似文献   

20.
Quaternary ammonium salts 2(RCH2COO)·(2H·DACE)+ were synthesized in up to 98% yield by the reaction of biologically active organylheteroacetic acids (OHA) RCH2COOH with diaza-18-crown-6 ether (DACE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号