首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have explored the photodissociation dynamics of the reaction H(2)CO+hnu-->H+HCO in the range of 810-2600 cm(-1) above the reaction threshold. Supersonically cooled formaldehyde was excited into selected J(Ka,Kc) rotational states of six vibrational levels (1(1)4(1), 5(1), 2(2)6(1), 2(2)4(3), 2(3)4(1), and 2(4)4(1)) in the A((1)A2) state. The laser induced fluorescence spectra of the nascent HCO fragment provided detailed product state distributions. When formaldehyde was excited into the low-lying levels 1(1)4(1), 5(1), and 2(2)6(1), at E(avail)<1120 cm(-1), the product state distribution can be modeled qualitatively by phase space theory. These dynamics are interpreted as arising from a reaction path on the barrierless S0 surface. When the initial states 2(2)4(3) and 2(3)4(1) were excited (E(avail)=1120-1500 cm(-1)), a second type of product state distribution appeared. This second distribution peaked sharply at low N, Ka and was severely truncated in comparison with those obtained from the lower lying states. At the even higher energy of 2(4)4(1) (E(avail) approximately 2600 cm(-1)) the sharply peaked distribution appears to be dominant. We attribute this change in dynamics to the opening up of the triplet channel to produce HCO. The theoretical height of the barrier on the T1 surface lies between 1700 and 2100 cm(-1) and so we consider the triplet reaction to proceed via tunneling at the intermediate energies and proceed over the barrier at the higher energies. Considerable population was observed in the excited (0,0,1) state for all initial H(2)CO states that lie above the appearance energy. Rotational populations in the (0,0,1) state dropped more rapidly with (N,Ka) than did the equivalent populations in (0,0,0). This indicates that, although individual rotational states are highly populated in (0,0,1), the total v3=1 population might not be so large. Specific population was also measured in the almost isoenergetic Kc and J states. No consistent population preference was found for either asymmetry or spin-rotation component.  相似文献   

2.
The photodissociation dynamics of the reaction H2CO+hnu --> H + HCO have been investigated in the range 60-400 cm(-1) above the reaction threshold. Supersonically cooled formaldehyde was excited into 15 specific J, K(a), K, rotational states i n two vibrational lev el s 2(1) 4(1) 6(1) and 2(2) 4(1) in the A(1A2) state. The laser-induced fluorescence spectra of the nascent HCO fragment provided detailed product state distributions (PSDs), resolved by N, K(a), K(c), and J. When just the overall molecular rotation N is considered the PSDs are in remarkable agreement with calculations based on phase space theory (PST). However, when the projection of N onto the molecular frame (K(a),K(c)) is included the distributions show consistent deviations from PST. In particular, there is a tendency to preserve the initial parent rotational motion about the a and b axes. The effect is that states with higher initial K(a) in H2CO produce higher final K(a) in the HCO fragment. There is also a tendency for the upper/lower members of the asymmetry doublets in H2CO to map onto the same upper/lower set of product state asymmetry doublets. Finally, there are oscillations in some of the detailed PSDs that remain unexplained.  相似文献   

3.
The dynamics of photodissociation of glyoxal (HOC-COH) near the dissociation threshold on the triplet manifold are studied through measurement of distributions of nascent fragment HCO in various internal states. Three rotational levels 1(01) (*), 4(13) (*), and 3(21) (*)+3(22) (*) of vibrational state U (excitation wavelength approximately 394.4 nm, origin at 25,331.865 cm(-1)) of glyoxal in state A (1)A(u) and two other vibrational states at excitation wavelengths 390.33 and 382.65 nm are selected to produce fragment HCO. By means of fluorescence in the transition B (2)A(')-X (2)A(') of HCO, we determined the relative populations of internal states of that fragment. Rotational states of product HCO up to N=26 and K=2 are populated, and bimodal distributions of these rotational states are observed for the photolysis wavelengths used in this work. The high rotational part of the distribution with average energy near values calculated on the basis of the statistical model-phase-space theory is assigned to arise from glyoxal on its S(0) surface, and the low rotational part from the T(1) surface with an exit barrier. After photolysis near the threshold region on the triplet surface, HCO arising from the T(1) state appears to be a major component of products because these rotational levels 1(01) (*), 4(13) (*), and 3(2) (*) of U state selected are gateway states with an enhanced rate of intersystem crossing.  相似文献   

4.
The laser-induced photodissociation of formaldehyde in the wavelength range 309相似文献   

5.
We report quasiclassical trajectory calculations of the dynamics of the two reaction channels of formaldehyde dissociation on a global ab initio potential energy surface: the molecular channel H(2)CO-->H(2) + CO and the radical H(2)CO-->H + HCO. For the molecular channel, it is confirmed that above the threshold of the radical channel a second, intramolecular hydrogen abstraction pathway is opened to produce CO with low rotation and vibrationally hot H(2). The low-j(CO) and high-nu(H(2) ) products from the second pathway increase with the total energy. The competition between the molecular and radical pathways is also studied. It shows that the branching ratio of the molecular products decreases with increasing energy, while the branching ratio of the radical products increases. The results agree well with very recent velocity-map imaging experiments of Suits and co-workers and solves a mystery first posed by Moore and co-workers. For the radical channel, we present the translational energy distributions and HCO rotation distributions at various energies. There is mixed agreement with the experiments of Wittig and co-workers, and this provides an indirect confirmation of their speculation that the triplet surface plays a role in the formation of the radical products.  相似文献   

6.
7.
The distribution of rotational and vibrational energy in HCO produced by the O((3)P)+C(2)H(4) reaction has been measured using laser-induced fluorescence detection via the B(2)A(')-X(2)A(') transition. Over a detection wavelength range of 248-290 nm, our experiments have shown that HCO is formed in both the ground state and in at least six vibrationally excited states with up to two quanta of energy in the C-O stretch and the bending mode. Dispersed fluorescence experiments were conducted to positively assign all of the HCO vibrational bands. The experiments confirmed that many bands, including the B(000)-X(000) band, are affected by overlap with other HCO bands. Spectral modeling was used to separate the contributions of overlapping HCO B-X bands and to determine a nascent HCO rotational temperature of approximately 600 K, corresponding to approximately 6% of the total energy from the O((3)P)+C(2)H(4) reaction. HCO vibrational distributions were determined for two different average collision energies and were fit with vibrational temperatures of 1850+/-80 K and 2000+/-100 K, corresponding to approximately 15% of the total energy. The observed Boltzmann distribution of vibrational energy in HCO indicates that HCO and CH(3) are formed by the dissociation of an energized intermediate complex.  相似文献   

8.
Intermediate and transition-state energies have been calculated for the O+C3H6 (propene) reaction using the compound ab initio CBS-QB3 and G3 methods in combination with density functional theory. The lowest-lying triplet and singlet potential energy surfaces of the O-C3H6 system were investigated. RRKM statistical theory was used to predict product branching fractions over the 300-3000 K temperature and 0.001-760 Torr pressure ranges. The oxygen atom adds to the C3H6 terminal olefinic carbon in the primary step to generate a nascent triplet biradical, CH3CHCH2O. On the triplet surface, unimolecular dissociation of CH3CHCH2O to yield H+CH3CHCHO is favored over the entire temperature range, although the competing H2CO+CH3CH product channel becomes significant at high temperature. Rearrangement of triplet CH3CHCH2O to CH3CH2CHO (propanal) via a 1,2 H-atom shift has a barrier of 122.3 kJ mol(-1), largely blocking this reaction channel and any subsequent dissociation products. Intersystem crossing of triplet CH3CHCH2O to the singlet surface, however, leads to facile rearrangement to singlet CH3CH2CHO, which dissociates via numerous product channels. Pressure was found to have little influence over the branching ratios under most conditions, suggesting that the vibrational self-relaxation rates for p相似文献   

9.
The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded HCl-H(2)O dimer was studied following excitation of the dimer's HCl stretch by detecting the H(2)O fragment. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of the dimer, H(2)O fragments were detected by 2 + 1 REMPI via the C (1)B(1) (000) ← X (1)A(1) (000) transition. REMPI spectra clearly show H(2)O from dissociation produced in the ground vibrational state. The fragments' center-of-mass (c.m.) translational energy distributions were determined from images of selected rotational states of H(2)O and were converted to rotational state distributions of the HCl cofragment. The distributions were consistent with the previously measured dissociation energy of D(0) = 1334 ± 10 cm(-1) and show a clear preference for rotational levels in the HCl fragment that minimize translational energy release. The usefulness of 2 + 1 REMPI detection of water fragments is discussed.  相似文献   

10.
Ab initio molecular orbital theory is used to examine the singlet and triplet potential energy surfaces for the CH2N+ system. The results confirm those of earlier studies which suggested that the singlet H2NC+ isomer could be formed via the corresponding triplet isomer. Also, it is shown that the reaction HCN+ + H2 might lead to this metastable isomer without invoking the triplet species. The best test of the hypothesis that this molecule can be formed by gas phase, ion molecule reactions and may be an important precursor in the interstellar synthesis of HCN and HNC is to search for it in space. To this end, theoretical predictions are made of its rotational frequencies and its vibrational frequencies and intensities to serve as a guide to laboratory spectroscopists and radioastronomers.  相似文献   

11.
12.
We present a detailed experimental and theoretical investigation of formaldehyde photodissociation to H(2) and CO following excitation to the 2(1)4(1) and 2(1)4(3) transitions in S(1). The CO velocity distributions were obtained using dc slice imaging of single CO rotational states (v=0, j(CO)=5-45). These high-resolution measurements reveal the correlated internal state distribution in the H(2) cofragments. The results show that rotationally hot CO (j(CO) approximately 45) is produced in conjunction with vibrationally "cold" H(2) fragments (v=0-5): these products are formed through the well-known skewed transition state and described in detail in the accompanying paper. After excitation of formaldehyde above the threshold for the radical channel (H(2)CO-->H+HCO) we also find formation of rotationally cold CO (j(CO)=5-28) correlated to highly vibrationally excited H(2) (v=6-8). These products are formed through a novel mechanism that involves near dissociation followed by intramolecular H abstraction [D. Townsend et al., Science 306, 1158 (2004)], and that avoids the region of the transition state entirely. The dynamics of this "roaming" mechanism are the focus of this paper. The correlations between the vibrational states of H(2) and rotational states of CO formed following excitation on the 2(1)4(3) transition allow us to determine the relative contribution to molecular products from the roaming atom channel versus the conventional molecular channel.  相似文献   

13.
Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].  相似文献   

14.
Speed distributions of spectroscopically selected CO photoproducts of 308 nm ketene photodissociation have been measured by dc sliced ion imaging. Structured speed distributions are observed that match the clumps and gaps in the singlet CH2 rotational density of states. The effects of finite time gates in sliced ion imaging are important for the accurate treatment of quasicontinuous velocity distributions extending into the thickly sliced and fully projected regime, and an inversion algorithm has been implemented for the special case of isotropic fragmentation. With accurate velocity calibration and careful treatment of the velocity resolution, the new method allows us to characterize the coincident rotational state distribution of CH2 states as a smoothly varying deviation from an unbiased phase space theory (PST) limit, similar to a linear-surprisal analysis. High-energy rotational states of CH2 are underrepresented compared to PST in coincidence with all detected CO rotational states. There is no evidence for suppression of the fastest channels, as had been reported in two previous studies of this system by other techniques. The relative contributions of ground and first vibrationally excited singlet CH2 states in coincidence with selected rotational states of CO (upsilon=0) are well resolved and in remarkably good agreement with PST, despite large deviations from the PST rotational distributions in the CH2 fragments. At 308 nm, the singlet CH2 (upsilon2=0) and (upsilon2=1) channels are 2350 and 1000 cm(-1) above their respective thresholds. The observed vibrational branching is consistent with saturation at increasing energies of the energy-dependent suppression of rates with respect to the PST limit, attributed to a tightening variational transition state.  相似文献   

15.
The photodissociation of gaseous benzaldehyde (C6H5CHO) at 193, 248, and 266 nm using multimass ion imaging and step‐scan time‐resolved Fourier‐transform infrared emission techniques is investigated. We also characterize the potential energies with the CCSD(T)/6‐311+G(3df,2p) method and predict the branching ratios for various channels of dissociation. Upon photolysis at 248 and 266 nm, two major channels for formation of HCO and CO, with relative branching of 0.37:0.63 and 0.20:0.80, respectively, are observed. The C6H5+HCO channel has two components with large and small recoil velocities; the rapid component with average translational energy of approximately 25 kJ mol?1 dominates. The C6H6+CO channel has a similar distribution of translational energy for these two components. IR emission from internally excited C6H5CHO, ν3 (v=1) of HCO, and levels v≤2, J≤43 of CO are observed; the latter has an average rotational energy of approximately 13 kJ mol?1 and vibrational energy of approximately 6 kJ mol?1. Upon photolysis at 193 nm, similar distributions of energy are observed, except that the C6H5+HCO channel becomes the only major channel with a branching ratio of 0.82±0.10 and an increased proportion of the slow component; IR emission from levels ν1 (v=1) and ν3 (v=1 and 2) of HCO and v≤2, J≤43 of CO are observed; the latter has an average energy similar to that observed in photolysis at 248 nm. The observed product yields at different dissociation energies are compared to statistical‐theory predicted results based on the computed singlet and triplet potential‐energy surfaces.  相似文献   

16.
Previous experimental and theoretical studies of the radical dissociation channel of T(1) acetaldehyde show conflicting behavior in the HCO and CH(3) product distributions. To resolve these conflicts, a full-dimensional potential-energy surface for the dissociation of CH(3)CHO into HCO and CH(3) fragments over the barrier on the T(1) surface is developed based on RO-CCSD(T)/cc-pVTZ(DZ) ab initio calculations. 20,000 classical trajectories are calculated on this surface at each of five initial excess energies, spanning the excitation energies used in previous experimental studies, and translational, vibrational, and rotational distributions of the radical products are determined. For excess energies near the dissociation threshold, both the HCO and CH(3) products are vibrationally cold; there is a small amount of HCO rotational excitation and little CH(3) rotational excitation, and the reaction energy is partitioned dominantly (>90% at threshold) into relative translational motion. Close to threshold the HCO and CH(3) rotational distributions are symmetrically shaped, resembling a Gaussian function, in agreement with observed experimental HCO rotational distributions. As the excess energy increases the calculated HCO and CH(3) rotational distributions are observed to change from a Gaussian shape at threshold to one more resembling a Boltzmann distribution, a behavior also seen by various experimental groups. Thus the distribution of energy in these rotational degrees of freedom is observed to change from nonstatistical to apparently statistical, as excess energy increases. As the energy above threshold increases all the internal and external degrees of freedom are observed to gain population at a similar rate, broadly consistent with equipartitioning of the available energy at the transition state. These observations generally support the practice of separating the reaction dynamics into two reservoirs: an impulsive reservoir, fed by the exit channel dynamics, and a statistical reservoir, supported by the random distribution of excess energy above the barrier. The HCO rotation, however, is favored by approximately a factor of 3 over the statistical prediction. Thus, at sufficiently high excess energies, although the HCO rotational distribution may be considered statistical, the partitioning of energy into HCO rotation is not.  相似文献   

17.
The lowest singlet and triplet potential energy surfaces for all group 15 HAsXH (X = N, P, As, Sb, and Bi) systems have been explored through ab initio calculations. The geometries of the various isomers were determined at the QCISD/LANL2DZdp level and confirmed to be minima by vibrational analysis. In the case of nitrogen, the global minimum is found to be a triplet H(2)NAs structure. For the phosphorus case, singlet trans-HAs==PH is found to be global minima surrounded by large activation barriers, so that it should be observable. For arsenic, theoretical investigations demonstrate that the stability of HAsAsH isomers decreases in the order singlet trans-HAs==AsH > triplet H(2)AsAs > singlet cis-HAs==AsH > triplet HAsAsH > singlet H(2)AsAs. For antimony and bismuth, the theoretical findings suggest that the stability of HAsXH (X = Sb and Bi) systems decreases in the order triplet H(2)AsX approximately singlet trans-HAs==XH > singlet cis-HAs==XH > triplet HAsXH > triplet H(2)XAs > singlet H(2)AsX > singlet H(2)XAs. Our model calculations indicate that the relativistic effect on heavier group 15 elements should play an important role in determining the geometries as well as the stability of HAsXH molecules. The results obtained are in good agreement with the available experimental data and allow a number of predictions to be made.  相似文献   

18.
The pyrolysis of the simplest azides HN(3) and CH(3)N(3) has been studied computationally. Nitrogen extrusion leads to the production of NH or CH(3)N. The azides have singlet ground states but the nitrenes CH(3)N and NH have triplet ground states. The competition between spin-allowed decomposition to the excited state singlet nitrenes and the spin-forbidden N(2) loss is explored using accurate electronic structure methods (CASSCF/cc-pVTZ and MR-AQCC/cc-pVTZ) as well as statistical rate theories. Nonadiabatic rate theories are used for the dissociation leading to the triplet nitrenes. For HN(3), (3)NH formation is predicted to dominate at low energy, and the calculated rate constant agrees very well with energy-resolved experimental measurements. Under thermal conditions, however, the singlet and triplet pathways are predicted to occur competitively, with the spin-allowed product increasingly favored at higher temperatures. For CH(3)N(3) thermolysis, spin-allowed dissociation to form (1)CH(3)N should largely dominate at all temperatures, with spin-forbidden formation of (3)CH(3)N almost negligible. Singlet methyl nitrene is very unstable and should rearrange to CH(2)NH immediately upon formation, and the latter species may lose H(2) competitively with vibrational cooling, depending on temperature and pressure.  相似文献   

19.
Large basis CCSD(T) calculations are used to calculate the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. . The relative energy of the excited singlet state of Fe(CO)4 with respect to the ground triplet state is not known experimentally, and various lower levels of theory predict very different results. Upon extrapolating to the infinite basis set limit, and including corrections for core-core and core-valence correlation, scalar relativity, and multi-reference character of the wavefunction, the best CCSD(T) estimate for the spin-state splitting in iron tetracarbonyl is 2 kcal mol(-1). Calculation of the dissociation energy of 1Fe(CO)4(L) into singlet fragments, taken together with known experimental behaviour of triplet Fe(CO)4, provides independent evidence for the fact that the spin-state splitting is smaller than 3 kcal mol(-1). These calculations highlight some of the challenges involved in benchmark calculations on transition metal containing systems.  相似文献   

20.
The C2H2 + O(3P) and HCCO + O(3P) reactions are investigated using Fourier transform infrared (FTIR) emission spectroscopy. The O(3P) radicals are produced by 193 nm photolysis of an SO2 precursor or microwave discharge in O2. The HCCO radical is either formed in the first step of the C2H2 + O(3P) reaction or by 193 nm photodissociation of ethyl ethynyl ether. Vibrationally excited CO and CO2 products are observed. The microwave discharge experiment [C2H2 + O(3P)] shows a bimodal distribution of the CO(v) product, which is due to the sequential C2H2 + O(3P) and HCCO + O(3P) reactions. The vibrational distribution of CO(v) from the HCCO + O(3P) reaction also shows its own bimodal shape. The vibrational distribution of CO(v) from C2H2 + O(3P) can be characterized by a Boltzmann plot with a vibrational temperature of approximately 2400 +/- 100 K, in agreement with previous results. The CO distribution from the HCCO + O(3P) reaction, when studied under conditions to minimize other processes, shows very little contamination from other reactions, and the distribution can be characterized by a linear combination of Boltzmann plots with two vibrational temperatures: 2320 +/- 40 and 10 300 +/- 600 K. From the experimental results and previous theoretical work, the bimodal CO(v) distribution for the HCCO + O(3P) reaction suggests a sequential dissociation process of the HC(O)CO++ --> CO + HCO; HCO --> H + CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号