首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of AxBa8-xAl14Si31 (A = Sr, Eu) were grown using a molten Al flux technique. Single-crystal X-ray diffraction confirms that AxBa8-xAl14Si31 (A = Sr, Eu) crystallize with the type I clathrate structure, and phase purity was determined with powder X-ray diffraction. Stoichiometry was determined to be Sr0.7Ba7.3Al14Si31 and Eu0.3Ba7.7Al14Si31 by electron microprobe analysis. These AxBa8-xAl14Si31 phases can be described as framework-deficient clathrate type I structures with the general formula, AxBa8-xAlySi42-3y/4[]4-1/4y. DSC measurements indicate that these phases melt congruently at 1413 and 1415 K for Sr0.7Ba7.3Al14Si31 and Eu0.3Ba7.7Al14Si31, respectively. Temperature-dependent resistivity indicates metallic behavior, and the negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity of these phases remains low with Sr0.7Ba7.3Al14Si31 having the lowest values.  相似文献   

2.
A molten Al flux method was used to grow single crystals of the type I clathrate compound Ba8Al14Si31. Single-crystal neutron diffraction data for Ba8Al14Si31 were collected at room temperature using the SCD instrument at the Intense Pulsed Neutron Source, Argonne National Laboratory. Single-crystal neutron diffraction of Ba8Al14Si31 confirms that the Al partially occupies all of the framework sites (R1 = 0.0435, wR2 = 0.0687). Stoichiometry was determined by electron microprobe analysis, density measurements, and neutron diffraction analysis. Solid-state (27)Al NMR provides additional evidence for site preferences within the framework. This phase is best described as a framework-deficient solid solution Ba8Al14Si31, with the general formula, Ba(8)Al(x)Si(42-3/4x)[](4-1/4x) ([] indicates lattice defects). DSC measurements and powder X-ray diffraction data indicate that this is a congruently melting phase at 1416 K. Temperature-dependent resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers.  相似文献   

3.
Samples with the type I clathrate structure and composition Ba(8)Al(x)Si(46-x), where x = 8, 10, 12, 14, and 15, were examined by neutron powder diffraction at 35 K. The clathrate type I structure contains Ba cations as guests in a framework derived from tetrahedrally coordinated Al/Si atoms. The framework is made up of five- and six-membered rings that form dodecahedral and tetrakaidecahedral cages. The change in distances between tetrahedral sites across the series is used to develop a model for the mixed Al/Si occupancy observed in the framework. The calculated volumes of the cages that contain the Ba atoms display a linear increase with increasing Al composition. In the smaller dodecahedral cages, the Ba atomic displacement parameter is symmetry constrained to be isotropic for all compositions. In the larger tetrakaidecahedral cages, the anisotropic atomic displacement of the Ba atom depends upon the composition: the displacement is perpendicular (x = 8) and parallel (x = 15) to the six-membered ring. This difference in direction of the displacement parameter is attributed to interaction with the Al in the framework and not to the size of the cage volume as x increases from 8 to 15. The influence of the site occupation of Al in the framework on displacement of the cation at the 6d site is demonstrated.  相似文献   

4.
Samples of the type-I clathrate Sr(8)Al(x)Si(46-x) have been prepared by direct reaction of the elements. The type-I clathrate structure (cubic space group Pm3n) which has an Al-Si framework with Sr(2+) guest atoms forms with a narrow composition range of 9.54(6) ≤ x ≤ 10.30(8). Single crystals with composition A(8)Al(10)Si(36) (A = Sr, Ba) have been synthesized. Differential scanning calorimetry (DSC) measurements provide evidence for a peritectic reaction and melting point at ~1268 and ~1421 K for Sr(8)Al(10)Si(36) and Ba(8)Al(10)Si(36), respectively. Comparison of the structures reveals a strong correlation between the 24k-24k framework sites distances and the size of the guest cation. Electronic structure calculation and bonding analysis were carried out for the ordered models with the compositions A(8)Al(6)Si(40) (6c site occupied completely by Al) and A(8)Al(16)Si(30) (16i site occupied completely with Al). Analysis of the distribution of the electron localizability indicator (ELI) confirms that the Si-Si bonds are covalent, the Al-Si bonds are polar covalent, and the guest and the framework bonds are ionic in nature. The Sr(8)Al(6)Si(40) phase has a very small band gap that is closed upon additional Al, as observed in Sr(8)Al(16)Si(30). An explanation for the absence of a semiconducting "Sr(8)Al(16)Si(30)" phase is suggested in light of these findings.  相似文献   

5.
The framework-deficient clathrate phases Ba7.5Al13Si29 and Eu0.27Ba7.22Al13Si29 were prepared using a molten Al flux. Single-crystal X-ray diffraction confirmed the two phases to be clathrate type I (space group Pmn). For Eu0.27Ba7.22Al13Si29, single-crystal X-ray diffraction revealed the Eu to partially occupy the 2a position. Microprobe analysis of single crystals provided the stoichiometry, and Raman spectroscopy was used to investigate the guest framework interactions. The Raman spectra are consistent with both Ba7.5Al13Si29 and Eu0.27Ba7.22Al13Si29 having minimal guest-host interactions. Magnetic susceptibility data for Eu0.27Ba7.22Al13Si29 imply weak magnetic ordering and indicate a 2+ oxidation state for the Eu ion.  相似文献   

6.
Type-I clathrate phase Ba(8)Ni(x)□(y)Si(46-x-y) (□ = vacancy) was obtained from the elements at 1000 °C with the homogeneity range 2.4 ≤ x ≤ 3.8 and 0 ≤ y ≤ 0.9. In addition, samples with low Ni content (x = 1.4 and 1.6; y = 0) and small Ba deficiency were prepared from the melt by steel-quenching. Compositions were established by microprobe analysis and crystal structure determination. Ba(8-δ)Ni(x)□(y)Si(46-x-y) crystallizes in the space group Pm ?3n (No. 223) with lattice parameter ranging from a = 10.3088(1) ? for Ba(7.9(1))Ni(1.4(1))Si(44.6(1)) to a = 10.2896(1) ? for Ba(8.00(3))Ni(3.82(4))Si(41.33(6)). Single-crystal X-ray diffraction data together with microprobe analysis indicate an increasing number of framework vacancies toward compositions with higher Ni content. For all compositions investigated, Ni K-edge X-ray absorption spectroscopy measurements showed an electronic state close to that of elemental Ni. All samples exhibit metallic-like behavior with moderate thermopower and low thermal conductivity in the temperature range 300-773 K. Samples with compositions Ba(7.9(1))Ni(1.4(1))Si(44.6(1)) and Ba(7.9(1))Ni(1.6(1))Si(44.4(1)) are superconducting with T(c) values of 6.0 and 5.5 K, respectively.  相似文献   

7.
A hydrogen-encapsulated inorganic clathrate, which is stable at ambient temperature and pressure, has been prepared in high yield. Na5.5(H2)2.15Si46 is a sodium-deficient, hydrogen-encapsulated, type I silicon clathrate. It was prepared by the reaction between NaSi and NH4Br under dynamic vacuum at 300 degrees C. The Rietveld refinement of the powder X-ray diffraction data is consistent with the clathrate type I structure. The type I clathrate structure has two types of cages where the guest species, in this case Na and H2, can reside: a large cage composed of 24 Si, in which the guest resides in the 6d crystallographic position, and a smaller one composed of 20 Si, in which the guest occupies the 2a position. Solid-state 23Na, 1H, and 29Si MAS NMR confirmed the presence of both sodium and hydrogen in the clathrate cages. 23Na NMR shows that sodium completely fills the small cage and is deficient in the larger cage. The 1H NMR spectrum shows a pattern consistent with mobile hydrogen in the large cage. 29Si NMR spectrum is consistent with phase pure type I clathrate framework. Elemental analysis is consistent with the stoichiometry Na5.5(H2.15)2Si46. The sodium occupancy was also examined using spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM). The high-angle annular dark-field (HAADF) STEM experimental and simulated images indicated that the Na occupancy of the large cage, 6d sites, is less than 2/3, consistent with the NMR and elemental analysis.  相似文献   

8.
A new silicon clathrate compound with a composition of Ba8Si46 was prepared under high-pressure and high-temperature conditions. The compound was isomorphous with Na8Si46 and became a superconductor with a transition temperature of 8.0 K. Barium atoms occupy all of the Si20 and Si24 cages of the clathrate structure. This is the first clathrate superconductor obtained as a bulk phase.  相似文献   

9.
Various boron only ([B]-BEA) as well as aluminum- and boron-containing beta zeolites ([Al,B]-BEA) have been prepared and modified by ion exchange of ammonium, sodium, and nickel ions. The zeolite samples have been characterized by 11B, 27Al, and 29Si MAS as well as three of them by 11B and 27Al 3Q-MAS NMR spectroscopy. The quantitative contributions of defect-free Si(nX) (n = 2, 1, 0; X = Al, B) and Si(OH)x (x = 2, 1) sites to the NMR signal intensities were calculated from the various Si/(Al + B) ratios and relative 11B, 27Al, and 29Si NMR signal intensities using the special distribution of aluminum and boron in different periodical building units of the zeolite framework. The boron atoms are sitting exclusively in diagonal positions in the four-membered rings of [B]-BEA zeolites, while the aluminum atoms are situated both in diagonal and lone positions in the four-membered rings of [Al,B]-BEA zeolites. A higher part of boron atoms are positioned in framework-related deformed tetrahedral boron species than in lattice positions in the [B]-BEA than in the [Al,B]-BEA zeolites. All extraframework octahedral aluminum species are transformed back to lattice positions due to ion exchange from the protonated form to ammonium-, sodium-, or nickel-ions containing zeolites. Oppositely, trigonal boron leaves the zeolite structure completely during ion exchange.  相似文献   

10.
Single crystals of BaAl2Si2 were grown from an Al molten flux and characterized using single-crystal X-ray diffraction at 10 and 90 K and neutron diffraction at room temperature. BaAl2Si2 crystallizes with the alpha-BaCu2S2 structure type (Pnma), is isostructural with alpha-BaAl2Ge2, and is an open 3D framework compound, where Al and Si form a covalent cagelike network with Ba2+ cations residing in the cages. BaAl2Si2 has a unit cell of a=10.070(3) A, b=4.234(1) A, and c=10.866(3) A, as determined by room-temperature single-crystal neutron diffraction (R1=0.0533, wR2=0.1034). The structure as determined by single-crystal neutron and X-ray diffraction (10 and 90 K) indicates that BaAl2Si2 (Pnma) is strictly isostructural to other (alpha)-BaCu2S2-type structures, requiring site specificity for Al and Si. Unlike BaAl2Ge2, no evidence for an alpha to beta (BaZn2P2-type, I4/mmm) phase transition was observed. This compound shows metallic electronic resistivity and Pauli paramagnetic behavior.  相似文献   

11.
The systems AeAl(2-x)Mgx (Ae = Ca, Sr, Ba) display electron concentration induced Laves phase structural changes. However, the complete sequence MgCu2 --> MgNi2 --> MgZn2 with increasing x (decreasing electron count) is only observed for Ae = Ca. Compounds SrAl(2-x)Mgx (0 < x < or = 2) and BaAl(2-x)Mgx (x = 0.85 and 2.0) were synthesized and structurally characterized by X-ray diffraction experiments. For the Sr system the structural sequence CeCu2 --> MgNi2 --> MgZn2 occurs with increasing Mg content x. Thus, larger Sr does not allow the realization of the MgCu2 structure at low x. For Ae = Ba a binary compound BaAl2 does not exist, but more Ba-rich Ba7Al13 forms. The reinvestigation of the crystal structure of Ba7Al13 by selected area and convergent beam electron diffraction in a transmission electron microscope revealed a superstructure, which subsequently could be refined from single X-ray diffraction data. The formula unit of the superstructure is Ba21Al40 (space group P31m, Z = 1, a = 10.568(1) angstroms, c = 17.205(6) angstroms). In Ba21Al40 a size match problem between Ba and Al present in Ba7Al13 is resolved. The structure of Ba7Al13 (Ba21Al40) can be considered as a Ba excess variant of the hexagonal MgNi2 Laves phase type structure. An incommensurately modulated variant of the MgNi2 structure is obtained for phases BaAl(2-x)Mgx with x = 0.8-1. At even higher Mg concentrations a structural change to the proper MgZn2 type structure takes place.  相似文献   

12.
The optical properties of Eu-activated (Ba,Sr)(13-x)Al(22-2x)Si(10+2x)O66 materials have been determined after the structural reinvestigation of the hypothetical Ba 13Al 22Si 10O 66 material on the basis of the Gebert's model. The white fluorescence and phosphorescence of the (Ba,Sr)(13-x)Al(22-2x)Si(10+2x)O66:Eu series result from the existence of two broad emission bands associated with (8)H-4f(6)5d(1)-->(8)S-4f(7) transitions peaking at 534 and 438 nm, the intensities of which may be tuned at room temperature via the control of the europium concentration and the substitution of Sr for Ba. This suggests the possibility to adjust the emission of the material to white LED requisites.  相似文献   

13.
Two new quaternary aluminum silicides, RE8Ru12Al49Si9(Al(x)Si12-x) (x approximately 4; RE = Pr, Sm), have been synthesized from Sm (or Sm2O3), Pr, Ru, and Si in molten aluminum between 800 and 1000 degrees C in sealed fused silica tubes. Both compounds form black shiny crystals that are stable in air and NaOH. The Nd analog is also stable. The compounds crystallize in a new structural type. The structure, determined by single-crystal X-ray diffraction, is cubic, space group Pm3m with Z = 1, and has lattice parameters of a = 11.510(1) A for Sm8Ru12Al49Si9(Al(x)Si12-x) and a = 11.553(2) A for Pr8Ru12Al49Si9(Al(x)Si12-x) (x approximately 4). The structure consists of octahedral units of AlSi6, at the cell center, Si2Ru4Al8 clusters, at each face center, SiAl8 cubes, at the middle of the cell edges, and unique (Al,Si)12 cuboctohedral clusters, at the cell corners. These different structural units are connected to each other either by shared atoms, Al-Al bonds, or Al-Ru bonds. The rare earth metal atoms fill the space between various structural units. The Al/Si distribution was verified by single-crystal neutron diffraction studies conducted on Pr8Ru12Al49Si9(Al(x)Si12-x). Sm8Ru12Al49Si9(Al(x)Si12-x) and Pr8Ru12Al49Si9(Al(x)Si12-x) show ferromagnetic ordering at Tc approximately 10 and approximately 20 K, respectively. A charge of 3+ can be assigned to the rare earth atoms while the Ru atoms are diamagnetic.  相似文献   

14.
The electronic structure, stability, and reactivity of iodized aluminum clusters, which have been investigated via reactivity studies, are examined by first-principles gradient corrected density functional calculations. The observed behavior of Al13I(x)- and Al14I(x)- clusters is shown to indicate that for x < or = 8, they consist of compact Al13- and Al14++ cores, respectively, demonstrating that they behave as halogen- or alkaline earth-like superatoms. For x > 8, the Al cores assume a cagelike structure associated with the charging of the cores. The observed mass spectra of the reacted clusters reveal that Al13I(x)- species are more stable for even x while Al14I(x)- exhibit enhanced stability for odd x(x > or = 3). It is shown that these observations are linked to the formation and filling of "active sites," demonstrating a novel chemistry of superatoms.  相似文献   

15.
The clathrate-I phase Ba(8-x)Si(46) (space group Pm3?n) was synthesized by oxidation of Ba(4)Li(2)Si(6) with gaseous HCl. Microcrystalline powders of the clathrate phase were obtained within a few minutes. The reaction temperature and the pressure of HCl were optimized to achieve good-quality crystalline products with a composition range of 1.3 < x < 1.9. The new preparation route presented here provides an alternative to the high-pressure synthesis applied so far.  相似文献   

16.
Derivatizedp0ly0x0metalates(POMs)havereceivedincreasingattenti011tbrthelas1twentyyearsowingtotheirpotentialinbifunctionalcatalysis'.Ithasbeenrec0gnizedforal0ngtimethattheversatiIityofthepoly0x0metalatesandtheircatalyticapplicati0ncanbesignificantlyincreasedbygraftingorganicand0rgan0metalIicgroup0ntothepoIyoxometalatesurface.Organophosph0nylderivatives0fheter0polyanionshavebeenreportedpreviously=.Asthecontinuation,werep0rtthesynthesisandcharacterizationofthetitlec0mpounds.Sodiumandpotassiums…  相似文献   

17.
Single crystals of the Ba-containing silicon clathrate superconductor Ba(7.76)Si(46) were prepared using a high-pressure and high-temperature condition (3 GPa, 1300 degrees C). It crystallized in the cubic space group Pm-3n with a = 10.3141(7) A and Z = 1. There are two crystallographically different types of Ba sites, at the centers of Si dodecahederal (Ba@Si(20)) and Si tetrakaidecahedral (Ba@Si(24)) cages. On evacuation at 527 degrees C, a part of Ba atoms were removed from the Ba@Si(20) sites. The superconducting transition temperature (T(c)) decreased from 9.0 to 6.0 K with the decrease of the Ba content from 7.76 to 6.63 Ba/Si(46). The Ba deficient sites and the deficiency were determined by the structural refinement in the single-crystal X-ray analyses.  相似文献   

18.
A novel tin phosphide bromide, Sn(24)P(19.3(2))Br(8), and Sn(24)P(19.3(2))Br(x)()I(8)(-)(x) (x = 0-8) solid solution have been prepared and structurally characterized. All compounds crystallize with the type-I clathrate structure in the cubic space group Pmn (No. 223). The clathrate framework of the title solid solution shows a remarkable chemical compressibility: the unit cell parameter drops from 10.954(1) to 10.820(1) A on going from x = 0 to x = 8, a feature that has never been observed for normally rigid clathrate frameworks. The chemical compressibility as well as non-Vegard dependence of the unit cell parameter upon the bromine content is attributed to the nonuniform distribution of the guest halogen atoms in the polyhedral cavities of the clathrate framework. The temperature-dependent structural study performed on Sn(24)P(19.3(2))Br(8) has shown that, in contrast to the chemical compressibility, the thermal compressibility (linear contraction) of the phase is similar to that observed for the Group 14 anionic clathrates. The tin phosphide bromide does not undergo phase transition down to 90 K, and the atomic displacement parameters for all atoms decrease linearly upon lowering the temperature. These linear dependencies have been used to assess such physical constants as Debye temperature, 220 K, and the lattice part of thermal conductivity, 0.7 W/(m K). Principal differences between the title compounds and the group 14 anionic clathrates are highlighted, and the prospects of creating new thermoelectric materials based on cationic clathrates are briefly discussed.  相似文献   

19.
Ma X  Chen B  Latturner SE 《Inorganic chemistry》2012,51(11):6089-6095
Reactions of iron, silicon, and R = Gd, Dy, or Y in 1:1 Mg/Al mixed flux produce well-formed crystals of R(5)Mg(5)Fe(4)Al(x)Si(18-x) (x ≈ 12). These phases have a new structure type in tetragonal space group P4/mmm (a = 11.655(2) ?, c = 4.0668(8) ?, Z = 1 and R(1) = 0.0155 for the Dy analogue). The structure features two rare earth sites and one iron site; the latter is in monocapped trigonal prismatic coordination surrounded by silicon and aluminum atoms. Siting of Al and Si was investigated using bond length analysis and (27)Al and (29)Si MAS NMR studies. The magnetic properties are determined by the R elements, with the Gd and Dy analogues exhibiting antiferromagnetic ordering at T(N) = 11.9 and 6.9 K respectively; both phases exhibit complex metamagnetic behavior with varying field.  相似文献   

20.
The combination of early rare earth metals (La- to Gd and Yb), gold, and silicon in molten aluminum results in the formation of intermetallic compounds with four related structures, forming a new homologous series: RE[AuAl2]nAl2(AuxSi(1-x))2, with x approximately 0.5 for most of the compound and n = 0, 1, 2, and 3. Because of the highly reducing nature of the Al flux, rare earth oxides instead of metals can also be used in these reactions. These compounds grow as large plate-like crystals and have tetragonal structure types that can be viewed as intergrowths of the BaAl4 structure and antifluorite-type AuAl2 layers. REAuAl2Si materials form with the BaAl4 structure type in space group I4/mmm (cell parameters for the La analogue are a = 4.322(2) A, c = 10.750(4) A, and Z = 2). REAu2Al4Si forms in a new ordered superstructure of the KCu4S3 structure type, with space group P4/nmm and cell parameters of the La analogue of a = 6.0973(6) A, c = 8.206(1) A, and Z = 2. REAu3Al6Si forms in a new I4/mmm symmetry structure type with cell parameters of a = 4.2733(7) A, c = 22.582(5) A, and Z = 2 for RE = Eu. The end member of the series, REAu4Al8Si, forms in space group P4/mmm with cell parameters for the Yb analogue of a = 4.2294(4) A, c = 14.422(2) A, and Z = 1. New intergrowth structures containing two different kinds of AuAl2 layers were also observed. The magnetic behavior of all these compounds is derived from the RE ions. Comparison of the susceptibility data for the europium compounds indicates a switch from 3-D magnetic interactions to 2-D interactions as the size of the AuAl2 layer increases. The Yb ions in YbAu(2.91)Al(6)Si(1.09) and YbAu(3.86)Al(8)Si(1.14) are divalent at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号