首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The silk fibroin (SF) nanofiber mats with good water resistance and mechanical property were directly prepared by adding crosslinker 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) into the electrospin solution. The effect of EDC on the morphology, structure and physical properties of SF nanofiber mats was analyzed. With the addition of EDC, the average fiber diameter increased from 262 to 635 nm. The results from FTIR, TG-DTA and X-ray diffraction showed that EDC induced the structural transition from random coil to β-sheet conformation. Furthermore, the solubility and mechanical properties of SF nanofiber mats were obviously improved when the crosslinker EDC was used.  相似文献   

2.
Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer. By means of differential scanning calorimetry and wide-angle X-ray diffraction, the crystallinity and orientation changes in the PLLA and PCL fibers during the enzymatic degradation were investigated, respectively.  相似文献   

3.
The regenerated silk fibroin dissolved in formic acid was electrospun into nanofiber mats. Structural characteristics of the spun as received and methanol and ethanol treated fibers were examined using the Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. Mechanical properties and air permeability of the electrospun mats were also studied. IR spectroscopy and X-ray diffractometry showed random coil conformation and amorphous structure for as-spun fibers while typical FTIR spectra and X-ray diffractograms of β-sheet crystalline structure were recorded for the methanol and ethanol treated fibers. The mechanical properties of the mats were found to be dependent on fiber diameter. The mats containing fibers with smaller diameter had higher tensile strength but lower breaking strain. Methanol and ethanol treatment enhanced tensile strengths of the mats at the expenses of their breaking strain. Air permeability and pore size of the mats are strongly associated with diameter of the electrospun fibers.  相似文献   

4.
Silk fibroin (SF) nanofibrous mats were fabricated via electrospinning process. These fibers were blended with TiO2 nanoparticles (TiO2 NPs). The influence of TiO2 NPs on the nanofibrous matrices was investigated by scanning electron microscopy (SEM), transmission electron microscopy, energy‐dispersive X‐ray, and thermogravimetric analysis. The SEM images revealed that the average diameter of the SF/TiO2 fibers was 385 ± 63 nm when the concentration of SF was up to 10% (w/v). Infrared spectra showed that the β‐sheet structure of the silk fibroin increased after acetone treatment. These SF/TiO2 nanofibrous mats exhibited higher equilibrium water content and water vapor transmission rate than hydrocolloid dressing. The hemocompatibility and cytocompatibility of SF/TiO2 nanofibrous mats were evaluated by complete blood count, cell attachment, and the spreading of L929 fibroblasts. These SF/TiO2 nanofibrous mats exhibited antibacterial activity against Escherichia coli under UV irradiation. Thus, these novel nanocomposite mats may be used for biomedical applications such as wound dressing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrogels with improved mechanical properties have been particularly attractive for their applications in the biomedical area including wound healing. For this purpose, a series of novel composite hydrogels based on silk fibroin (SF) and 2-(N,N-dimethylamino) ethyl methacrylate (DMAEMA) were fabricated. The swelling and mechanical tests indicated that an optimum design of hydrogel was essential to provide a high degree of water uptake, higher tensile strength and elongation at break values. Here, the S40D60 was exhibited superior swelling and strong mechanical characteristics than all the other hydrogels with different compositions. Furthermore, it was observed that the cefixime was released from the formulation of S40D60 in a sustainable manner and the drug release rate can be controlled by pH of the dissolution medium. According to these findings, it is suggested that the optimal formulation of S40D60 would be effectively performed in situ drug therapy for wound healing.  相似文献   

6.
With the aim of the functionalization of silk fibroin (SF), conjugates of SF and polycationic chitooligosaccharides (COS) were prepared by the chemical modification of SF with cyanuric chloride (CY)-activated COS (COS-CY). The 1H NMR spectrum of the reaction product between a model compound D-glucosamine and CY suggested that the COS-CY modifier was synthesized by the reaction of the amino group and the terminal anomeric hydroxyl group in COS, with the chlorine atom of CY. The 1H NMR spectrum and amino acid analysis of the conjugates (COS-CY-SF) clarified that the tyrosine and lysine residues of SF reacted with a second chlorine atom of the triazine ring of the modifier. On the basis of the results of the hexosamine determination and the amino acid analysis of COS-CY-SF, it is estimated that COS-CY-SF consists of 38 wt% COS, 8 wt% CY, and 54 wt% SF. The absorbance at 600 nm as a function of pH for COS-CY-SF and SF indicated that the introduction of a large amount of hexosamine made SF amphiphilic and more water-soluble at lower pH values. The COS-CY-SF conjugates retarded the growth of Escherichia coli after incubation for 24 h at a conjugate concentration of 0.6% (w/v), while SF did not retard the growth at a SF concentration of 0.7% (w/v).  相似文献   

7.
In this paper, series of novel pH-responsive silver (Ag) nanoparticle/poly(2-hydroxyethyl methacrylate (HEMA)-poly(ethylene glycol) methyl ether methacrylate (PEGMA)-methacrylic acid (MAA)) composite hydrogel were successfully prepared by in situ reducing Ag+ ions anchored in the hydrogel by the deprotonized carboxyl acid groups. X-ray diffraction (XRD), UV-vis spectrophotometry, transmission electron microscopy (TEM) and electric conductivity tests were used to characterize the composite system. It was found that the size and morphology of the reduced Ag nanoparticles in the composite hydrogels could be changed by loading the Ag+ ions at various swelling ratios of hydrogel. Moreover, compared to the pure poly(HEMA-PEGMA-MAA) hydrogel, not only did the Ag nanoparticle/poly(HEMA-PEGMA-MAA) composite hydrogels exhibit much higher swelling ratio and faster deswelling rate, but also higher pH switchable electrical properties upon controlling the interparticle distance under pH stimulus. The pH responsive nanocomposite hydrogel reported here might be a potentially smart material in the range of applications including electronics, biosensors and drug-delivery devices.  相似文献   

8.
Fibrous poly(L-lactide) (PLLA) and bicomponent PLLA/poly(ethylene glycol) mats were prepared by electrospinning and then were coated with chitosan. The presence of chitosan coating was proved by scanning electron microscopy and by fluorescence microscopy. On contact with blood, the chitosan coating led to changes in erythrocyte shape and in their aggregation. The haemostatic activity of the mats increased with increasing chitosan content. Microbiological studies against Staphylococcus aureus revealed that the chitosan coating imparts antibacterial activity to the hybrid mats. The combined haemostatic and antibacterial activities render these novel materials suitable for wound-healing applications.  相似文献   

9.
For highly porous form such as sponges or scaffolds, the induction of the β-sheet formation of silk fibroin to make the water-stable materials usually results in their high shrinkage leading to a difficulty in controlling shape and size of materials. Thus, the objective of this study was to improve dimensional stability of silk fibroin sponge by incorporating chitin whiskers as nanofiller. Chitin whiskers exhibited the average length and width of 427 and 43 nm, respectively. Nanocomposite sponges at chitin whiskers to silk fibroin weight ratio (C/S ratio) of 0, 1/8, 2/8, or 4/8 were prepared by using a freeze-drying technique. The dispersion of chitin whiskers embedded in the silk fibroin matrix was found to be homogeneous. The presence of chitin whiskers embedded into silk fibroin sponge not only improved its dimensional stability but also enhanced its compression strength. Regardless of the chitin whisker content, SEM micrographs showed that all samples possessed an interconnected pore network with an average pore size of 150 μm. To investigate the feasibility of the nanocomposites for tissue engineering applications, L929 cells were seeded onto their surfaces, the results indicated that silk fibroin sponges both with and without chitin whiskers were cytocompatible. Moreover, when compared to the neat silk fibroin sponge, the incorporation of chitin whiskers into the silk fibroin matrix was found to promote cell spreading.  相似文献   

10.
Poly(ethylene glycol) grafted poly(L -lactide) was prepared by ring opening polymerization of L -lactide and epoxy-terminated poly(ethylene glycol) methyl ether (PEGME). Stannous octoate and Al(Et)3·0.5 H2O were tested as polymerization catalysts, and Al(Et)3·0.5 H2O was found to be more effective for the ring-opening of the epoxy group of the modified PEGME monomer. The synthesized polymers were characterized by NMR and the efficiency of the incorporation of epoxy-terminated PEGME in the copolymer was determined.  相似文献   

11.
Preparation of electrospun chitosan/poly(vinyl alcohol) membranes   总被引:1,自引:0,他引:1  
Electrospinning of chitosan from its solutions in 2% aqueous acetic acid was studied by adding poly(vinyl alcohol) (PVA) as a “guest” polymer. Properties of the chitosan/PVA solutions including viscosity, conductivity, and surface tension were measured, and effects of the polymer concentration, chitosan/PVA mass ratio and processing parameters (applied voltage, flow rate, capillary-to-collector distance) on the electrospinnability of chitosan/PVA were investigated. Analyses of scanning electron micrographs and transmission electron micrographs suggested that the chitosan/PVA ultrafine fibers were often obtained along with beads, and chitosan was located in the elctrospun fibers as well as in the beads. Uniform chitosan/PVA fibers with an average diameter of 99 ± 21 nm could be prepared from a 7% chitosan/PVA solution in 40:60 mass ratio. Results of Fourier transform infrared spectroscopy and X-ray diffraction demonstrated that there were possible hydrogen bonds between chitosan and PVA molecules, which could weaken the strong interaction in chitosan itself and facilitate chitosan/PVA electrospinnability. The electrospun chitosan/PVA membranes showed higher water uptake and would have potential applications in wound dressings.  相似文献   

12.
Abstract

In this paper, a series of porous nanohydroxyapatite/silk fibroin/chitosan (nHA/SF/CTS) scaffolds were successfully prepared using the freeze-drying method. The biomaterials were characterized by attenuated total reflection Fourier transform infrared spectroscopy, and mechanical testing and thermogravimetric analysis. Moreover, studies of porosity, pore size, swelling properties and in vitro degradation test were performed. Research has proved that micro-structure, porosity, water adsorption and compressive strength were greatly affected by the components’ concentration, in particular the content of silk fibroin. SEM observations showed that the scaffolds of nHA/SF/CTS are highly porous, with pore size in wide range from 25 to 300?µm which is suitable for cell growth. nHA/SF/CTS scaffolds have sufficient mechanical integrity to resist handling during implantation and in vivo loading. Both, the compressive modulus and compressive strength of the scaffold, decrease with the increase in silk fibroin content.  相似文献   

13.
微波辅助壳聚糖接枝聚乳酸共聚物的合成及表征   总被引:3,自引:0,他引:3  
何柱国  罗丙红  周长忍  程松  张奕  钟翠红 《应用化学》2009,26(10):1134-1138
在微波辅助下,以辛酸亚锡为催化剂、壳聚糖(CS)为大分子引发剂引发消旋丙交酯(D,L-LA)本体开环聚合制备了壳聚糖接枝聚乳酸共聚物。通过正交实验研究了微波功率、催化剂用量、反应温度和反应时间对聚合反应的影响,确定了最佳合成条件。并通过红外光谱、元素分析、核磁共振氢谱、X-射线衍射和热分析对接枝共聚物的结构与性能进行了表征。结果表明,在微波条件下,能快速、有效地合成预定结构的壳聚糖接枝聚乳酸共聚物;聚乳酸支链的引入,有效削弱了壳聚糖分子间和分子内较强的氢键作用,与相应的壳聚糖比较,共聚物的结晶性能下降,热分解温度降低;原料配比对共聚物的结构与性能有显著影响,随nD,L-LA/nCS糖环数值增大,共聚物中平均乳酰单元数逐渐增大,共聚物的结晶性能、起始分解温度逐渐下降。  相似文献   

14.
Solid conducting biodegradable composite membranes have shown to enhance nerve regeneration. However, few efforts have been directed toward porous conducting biodegradable composite membranes for the same purpose. In this study, we have fabricated some porous conducting poly(dl-lactide) composite membranes which can be used for the biodegradable nerve conduits. The porous poly(dl-lactide) membranes were first prepared through a phase separation method, and then they were incorporated with polypyrrole to produce porous conducting composite membranes by polymerizing pyrrole monomer in gas phase using FeCl3 as oxidant. The preparation conditions were optimized to obtain membranes with controlled pore size and porosity. The direct current conductivity of composite membrane was investigated using standard four-point technique. The effects of polymerization time and the concentration of oxidant on the conductivity of the composite membrane were examined. Under optimized polymerization conditions, some composite membranes showed a conductivity close to 10−3 S cm−1 with a lower polypyrrole loading between 2 and 3 wt.%. A consecutive degradation in Ringer's solution at 37 °C indicated that the conductivity of composite membrane did not exhibit significant changes until 9 weeks although a noticeable weight loss of the composite membrane could be seen since the end of the second week.  相似文献   

15.
 The enzymatic hydrolysis of a model poly(D,L-lactide) by cutinase was studied by using a barostat surface balance. A theoretical approach based on the adaptation of the Michaelis–Menten scheme at the interface and a process of random fragmentation of the macromolecules was developed. The role of the interfacial organisation of the reaction products was discussed. Hydrolysis rate constant values and the specific activity were estimated and compared with those obtained for the hydrolysis of lipid monolayers. The process of fragmentation of the interfacial polymer structures was visualised by using AFM imaging. Received: 19 August 1996 Accepted: 13 December 1996  相似文献   

16.
羟乙基壳聚糖的合成及其与聚乳酸的相容性   总被引:2,自引:0,他引:2  
本文以异丙醇为溶剂,碱化壳聚糖与2-氯乙醇反应制备了羟乙基壳聚糖,对产物的结构与性能进行了分析表征;然后以二甲基亚砜为溶剂,采用溶液共混法制备了一系列不同组成的壳聚糖/聚乳酸和羟乙基壳聚糖/聚乳酸复合膜,对两组分间的相容性进行了研究。结果表明,羟乙基化反应在-OH和-NH2上均有发生,壳聚糖单元糖环上的羟乙基取代度为2.46;改性后,壳聚糖结晶性能和起始热分解温度下降,溶解性能得到改善。复合膜的电镜结果显示,在壳聚糖/聚乳酸复合膜中,相分离现象显著存在,壳聚糖在聚乳酸基体中的分散不均匀,有团聚现象,随着壳聚糖含量增加,两组分间的相分离程度增大,团聚现象更为严重,当壳聚糖含量达到50%时,已难以制备完整的复合膜;与之相反,羟乙基壳聚糖/聚乳酸复合膜中两种组分之间的相容性有所改善,相分离现象不明显,并且,当羟乙基壳聚糖含量从10%增加到50%,复合膜中两种组分之间的相容性变化不大。  相似文献   

17.
The effects of gamma irradiation on the structure and properties of hydroxyapatite/poly L-lactide (HAp/PLLA) biomaterial have been investigated. Effects of radiation on microstructure, degradation of polymer part and thermal stability of composite were determined by scanning electronic microscopy (SEM), gel permeation chromatography (GPC) and thermogravimetric analysis (TGA), respectively. Mechanical properties were obtained through mechanical strength and elasticity modulus. Presented results show that properties of HAp/PLLA decay with irradiation dose, but for doses required for sterilization, changes and damaging effects are acceptable.  相似文献   

18.
19.
Silk fibroin (SF) is a natural protein from silkworm. It represents Chinas resplendent civili-zation as dress materials in the past 5000 a. To this day, the silk output in China is about 90000 tons per year, which is about 70% of the world overall output. In the past decade, it has been found that silk fibroin has special properties for being used as healthy foods, cosmetics, enzyme immobilizing materials, cell culture medium, biosensor, artificial skin, artificial muscle, perme-able membran…  相似文献   

20.
Wet poly(vinyl chloride) (wPVC) coated glassy carbon (GC) electrode was prepared by casting a DMF solution of poly(vinyl chloride) on glassy carbon and immersing it in methanol, and then in water. The wPVC coated GC (wPVC/GC) electrode showed electrochemical activity in aqueous solution; therefore, it was possible to obtain a wPVC/polypyrolle (PPy) composite by electropolymerization from aqueous solution of pyrolle (Py) into the wPVC matrix on the electrode. PPy segregated in wPVC matrix and the mechanical properties of PPy was improved by forming a composite without changing the electrochemical properties of PPy. The PPy/wPVC ratio can be controlled by controlling the concentration of PVC in DMF solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号