首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence for the determination of protein with functionalized nano-ZnS   总被引:4,自引:0,他引:4  
Wang LY  Kan XW  Zhang MC  Zhu CQ  Wang L 《The Analyst》2002,127(11):1531-1534
ZnS nanoparticles have been prepared and modified with sodium thioglycolate. The functionalized nanoparticles are water-soluble. They were used as fluorescence probes in the determination of proteins, which was proved to be a simple, rapid and specific method. In comparison with single organic fluorophores, these nanoparticle probes are brighter, more stable against photobleaching, and do not suffer from blinking. Under optimum conditions, linear relationships were found between the enhanced intensity of fluorescence at 441 nm and the concentration of protein in the range 0.1-4.0 microg mL(-1) for human serum albumin (HSA), 0.2-3.0 microg mL(-1) for bovine serum albumin (BSA) and 0.1-4.5 microg mL(-1) for gamma-globulin (gamma-G). The limits of detection were 0.015 microg mL(-1) for HSA, 0.024 microg mL(-1) and 0.017 microg mL(-1) for BSA and gamma-G, respectively. The method has been applied to the analysis of human serum samples collected from the hospital and the results were in good agreement with those reported by a hospital, indicating that the method presented here is not only sensitive and simple, but also reliable and suitable for practical application.  相似文献   

2.
This paper describes the development of organic fluorescence nanoparticles. The nanoparticles have a narrow, tunable, symmetric emission spectrum and a broad, continuous excitation spectrum. The nanoparticles have high room-temperature fluorescence quantum yields and long fluorescence lifetime. They are also photochemically stable and water-soluble. They were used as fluorescence biosensor in the determination of proteins, which was proved to be a simple, rapid and specific method. In comparison with single organic fluorephores, these nanoparticles are brighter, more stable against photobleaching, and do not suffer from blinking. Under optimal conditions, the linear ranges of the calibration curves were 0.1-4.5 microg ml(-1) for human serum albumin (HSA), 0.2-3.5 microg ml(-1) for bovine serum albumin (BSA) and 0.04-0.8 microg ml(-1) for gamma globulin (gamma-IgG), respectively. The detection limits were 0.062 microg ml(-1) for HSA, 0.036 microg ml(-1) for BSA and 0.022 microg ml(-1) for gamma-IgG, respectively. However, when the content of HSA is lower than 0.8 microg ml(-1), HSA makes little contribution to the fluorescence quenching. So, the method was applied to direct selective quantification of gamma-IgG in human blood serum without separation of HSA. The results were in good agreement with these reported by the hospital, indicating that the method presented here is not only sensitive, selective and simple, but also reliable and suitable for practical applications.  相似文献   

3.
The manganese-tetrasulfonatophthalocyanine (MnTSPc) catalyzed luminol-hydrogen peroxide chemiluminescence (CL) systems can be quenched in the presence of proteins. A highly sensitive CL quenching method has been developed for the determination of proteins. Under optimum conditions, the linear ranges of the calibration curves were 0.1-20 microg/mL for human serum albumin (HSA), 0.2-20 microg/mL for human gamma-IgG, and 0.5-50 microg/mL for the bovine serum albumin (BSA) with the corresponding detection limits were 1.9 ng/mL, 2.7 ng/mL, and 3.4 ng/mL. The method has been applied to the analysis of total proteins in human serum samples and the results were in good agreement with clinical data provided.  相似文献   

4.
The interactions between riboflavin (RF) and human and bovine serum albumin (HSA and BSA) were studied by using absorption and fluorescence spectroscopic methods. Intrinsic fluorescence emission spectra of serum albumin in the presence of RF show that the endogenous photosensitizer acts as a quencher. The decrease of fluorescence intensity at about 350 nm is attributed to changes in the environment of the protein fluorophores caused by the ligand. The quenching mechanisms of albumins by RF were discussed. The binding constants and binding site number were obtained at various temperatures. The distance between albumins and RF in the complexes suggests that the primary binding site for RF is close to tryptophan residue (Trp214) of HSA and Trp212 of BSA. The hydration process of albumins has also been discussed.  相似文献   

5.
A series of twelve anionic, cationic, and neutral nickel(II) complexes have been synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA), human serum albumin (HSA), lysozyme (Lyso), and tryptophan (Trp) has been studied using steady-state fluorescence spectroscopy. Dynamic and static quenching constants have been calculated, and the role played in quenching by the ligand and complex charge investigated. The nickel complexes showed selectivity towards the different proteins based on the environment surrounding the Trp residue(s). Only small neutral complexes with hydrophobic ligands effectively quenched protein fluorescence via static quenching, with association constants ranging from 10(2) M(-1) (free Trp) to 10(10) M(-1) (lysozyme), indicating a spontaneous and thermodynamically favorable interaction. The number of binding sites, on average, was determined to be one in BSA, HSA and free Trp, and two in lysozyme.  相似文献   

6.
A novel method for the determination of proteins by using tetracarboxy manganese(II) phthalocyanine (MnC4Pc) as a resonance light scattering (RLS) probe has been developed. At pH 3.0 Britton-Robinson (B-R) buffer solution, the RLS intensity of MnC4Pc at 385 nm is greatly enhanced in the presence of proteins. The effects of pH, reaction time, concentration of MnC4Pc and interfering substances on the enhanced RLS intensity are investigated, respectively. Under optimal conditions, the linear ranges of the calibration curves are 0-2.00 microg mL(-1) for bovine serum albumin (BSA) and human serum albumin (HSA), 0.0-1.75 microg mL(-1) for human-IgG and ovalbumin, with a detection limit of 16.37 ng mL(-1) BSA, 17.62 ng mL(-1) HSA, 19.41 ng mL(-1) human-IgG and 20.72 ng mL(-1) ovalbumin. The method has been applied to the determination of total proteins in human serum samples collected from a hospital and the results are in good agreement with those reported by the hospital.  相似文献   

7.
Bovine (BSA) and human (HSA) serum albumins are frequently used in biophysical and biochemical studies since they have a similar folding, a well known primary structure, and they have been associated with the binding of many different categories of small molecules. One important difference of BSA and HSA is the fact that bovine albumin has two tryptophan residues while human albumin has a unique tryptophan. In this work results are presented for the interaction of BSA and HSA with several ionic surfactants, namely, anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS), as monitored by fluorescence spectroscopy of intrinsic tryptophans and circular dichroism spectroscopy. On the interaction of all three surfactants with BSA, at low concentrations, a quenching of fluorescence takes place and Stern-Volmer analysis allowed to estimate their 'effective' association constants to the protein: for SDS, CTAC and HPS at pH 7.0 these constants are, respectively, (1.4+/-0.1) x 10(5) M(-1), (8.9+/-0.1) x 10(3) M(-1) and (1.4+/-0.1) x 10(4) M(-1). A blue shift of maximum emission is observed from 345 to 330 nm upon surfactant binding. Analysis of fluorescence emission spectra allowed to separate three species in solution which were associated to native protein, a surfactant protein complex and partially denatured protein. The binding at low surfactant concentrations follows a Hill plot model displaying positive cooperativity and a number of surfactant binding sites very close to the number of cationic or anionic residues present in the protein. Circular dichroism data corroborated the partial loss of secondary structure upon surfactant addition showing the high stability of serum albumin. The interaction of the surfactants with HSA showed an enhancement of fluorescence at low concentrations, opposite to the effect on BSA, consistent with the existence of a unique buried tryptophan residue in this protein with considerable static quenching in the native state. The effects of surfactants at low concentrations were very similar to those of myristic acid suggesting a non specific binding through hydrophobic interaction modulated by eletrostatic interactions. The changes in the vicinity of the tryptophan residues are discussed based on the recently published crystallographic structure of HSA myristate complex (S. Curry et al., Nat. Struct. Biol. 5 (1998) 827).  相似文献   

8.
In recent years, people have paid close attention to the physiological harms induced byultraviolet (UV) irradiation. The serum albumin, which constitutes 60% of blood plasma,has very important physiological functions. Therefore, to study their photochemicalreaction is of great significance. The metal ions, little molecules and medicines etcinteracting with HSA or BSA have been reported ','*"', but it has not been repoFted aboutusing RLS to study the photochemical reaction of HSA or BSA.…  相似文献   

9.
The interaction of oleanolic acid (OA) and its glycosylated derivatives (LL-2 and LL-4) with human and bovine serum albumins were investigated using the methods of fluorescence spectroscopy. The spectroscopic analysis of the fluorescence quenching that occurs when OA and its derivatives interact with serum albumin indicates that these quenching constants are inversely correlated with temperature and the quenching process involves static interactions. The binding affinity of OA and OA-derived compounds to bovine serum albumin (BSA) and human serum albumin (HSA) follow the trend LL-4 > LL-2 > OA, suggesting that glycosylation of OA can facilitate its binding to serum albumins. Additionally, the binding affinity of these compounds to HSA is stronger than it is to BSA. The calculated thermodynamic parameters suggest that hydrophobic interactions dominate these interaction processes. We also found that only a single type of binding site exists for OA and its derivatives to HSA and BSA. Synchronous fluorescence results indicate that the binding of OA, LL-2 and LL-4 to BSA and HSA can lead to the conformational changes around the tryptophan residues of the two serum albumins. These results provided valuable clues to the pharmacokinetics and the pharmacologic activities of OA and its types of triterpenoid saponins derivatives.  相似文献   

10.
The polarized and nonpolarized fluorescence of bovine serum albumin and human serum albumin in Triton X-100 solutions is studied at different pH values. Analysis of the constants of fluorescence quenching for BSA and HSA after adding Triton X-100 and the hydrodynamic radii of BSA/HSA–detergent complexes show that the most effective complexation between both serum albumins and Triton X-100 occurs at pH 5.0, which lies near the isoelectric points of the proteins. Complexation between albumin and Triton X-100 affects the fluorescence of the Trp-214 residing in the hydrophobic pockets of both BSA and HSA.  相似文献   

11.
A new synchronous fluorescence scan analysis was developed for the determination of HSA with high sensitivity with a triphenylmethane acid dye methyl blue as a fluorescence probe. When Deltalambda=140 nm, the synchronous fluorescence peak of methyl blue is located at 323 nm and the synchronous fluorescence intensity of the methyl blue is significantly increased in the presence of trace HSA due to the complex formed between methyl blue and HSA at pH 4.1. Under optimal conditions, the calibration graphs are linear over the range 0.03-266.0 and 266.0-665.0 microg mL(-1) for human serum albumin (HSA). Limit of determination were 0.03 microg mL(-1) for HSA. In the detection of HSA in human serum samples, this method gave values close the clinical data got from hospital.  相似文献   

12.
Binding of chlorpromazine (CPZ) and hemin (Hmn) to human (HSA) and bovine (BSA) serum albumin was studied by fluorescence quenching technique. Intrinsic fluorescences of BSA and HSA were measured by selectively exciting their tryptophan residues. Gradual quenching was observed by titration of both proteins with CPZ and Hmn. CPZ is a widely used anti-psychosis drug that causes severe side effects and strongly interacts with biomembranes, both in its lipidic and proteic regions. CPZ also interacts with blood components, influences bioavailability, and affects the function of several biomolecules. Albumin plays an important role in the transport and storage of hormones, ions, fatty acids and others substances, including CPZ, affecting the regulation of their plasmatic concentration. Hmn is an important ferric residue of hemoglobin that binds within the hydrophobic region of albumin with great specificity. Hmn added to HSA and BSA solutions at a molar ratio of 1:1 quenched about half of their fluorescence. Stern-Volmer plots obtained from experiments carried out at 25 and 35 degrees C showed the quenching of fluorescence of HSA and BSA by CPZ to be a collisional phenomenon. Hmn quenches fluorescence by a static process, which specifically indicates the formation of a complex. Our results suggest the prime binding site for CPZ and Hmn on both HSA and BSA to be near tryptophan residues.  相似文献   

13.
Scopoletine (SLT), 7-hydroxy-6-methoxylcoumarin, is known to possess biological activities such as abirritating and anti-tumor, it can quench intrinsic fluorescence of bovine serum albumin (BSA) and the fluorescence intensity of itself is enhanced. So, SLT is used as fluorescence probe for quantitative determination of protein. The experiments indicate that under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins in a wide range, and their detection limits (S/N=3) are 1.4 x 10(-8)g mL(-1) for BSA and 1.1 x 10(-8)g mL(-1) for HSA, respectively. Samples were satisfactorily determined. The interaction mechanism is also discussed.  相似文献   

14.
The binding characteristics between 2,5-di-[2-(3,5-bis(2-pyridylmethyl)amine -4-hydroxy-phenyl) ethylene] pyrazine (1) or its complex (1-Zn) and serum albumins were studied by fluorescence spectroscopy in pH 7.4 aqueous solution. 1-Zn emitted weak fluorescence at 580 nm in a pH 7.4 Tris-HCl buffer solution when excited at 435 nm, however, the fluorescence intensity increased upon addition of serum albumins with the blue shift of emission peak to 524 nm. The binding constants were estimated as 8.40 x 10(7) and 3.03 x 10(6)mol(-1)L for bovine serum albumin (BSA) and human serum albumin (HSA) respectively, and the number of binding sites was 1 for each. The quenching mechanism of fluorescence of serum albumins by 1-Zn was considered as a static quenching process. The binding distance between 1-Zn and serum albumins and the energy transfer efficiency were obtained based on the theory of F?rester spectroscopy energy transfer. The effect of 1-Zn on the conformation of serum albumins was further analyzed using synchronous fluorescence spectrometry. The experiment results clearly showed that 1-Zn is a highly sensitive protein sensor.  相似文献   

15.
光谱法测定伊曲康唑与牛血清和人血清白蛋白相互作用   总被引:3,自引:0,他引:3  
用荧光光谱和紫外吸收光谱法, 在pH=7.4±0.1的0.1 mol·L-1磷酸缓冲溶液中, 研究了伊曲康唑与牛血清白蛋白(BSA)和人血清白蛋白(HSA)的相互作用. 实验结果表明, 伊曲康唑与牛血清白蛋白和人血清白蛋白作用的猝灭常数均随着温度的升高而降低, 伊曲康唑可以有规律地使血清白蛋白内源荧光猝灭, 其猝灭机理可认为是伊曲康唑与白蛋白形成复合物的静态猝灭. 获得了在不同温度下, 伊曲康唑与血清白蛋白作用的结合常数以及△G、△H和△S等热力学参数. 根据所得结果可推断伊曲康唑与白蛋白的作用力主要为疏水作用力, 同时, 利用荧光共振能量转移理论(FRET)计算得出了伊曲康唑与白蛋白结合位置的距离d. 而且, 利用同步荧光光谱和紫外光谱揭示了该反应中蛋白的结构和其微环境的变化.  相似文献   

16.
The Fe(3)O(4)/(sodium oleic acid/ethyltrimethyl ammonium bromide)(n)/4-aminobenzoic acid (Fe(3)O(4)/(NaOL/CTAB)(n)/PABA) nanocomposites have been prepared by a layer-by-layer self-assembly approach. This kind of nanocomposites have fluorescent, magnetic and water-soluble properties. Taking advantage of the magnetic property of nanocomposites, we can separated them from solution easily by using a permanent magnet. By using their strong fluorescence, we can detect proteins. At pH 6.98, the fluorescence of Fe(3)O(4)/(NaOL/CTAB)(n)/PABA nanocomposites can be enhanced by the proteins. Under optimal conditions, the linear ranges of calibration curves were 0.2-20, 0.2-13, 0.2-10 microg mL(-1) for gamma-globulin (gamma-IgG), human serum albumin (HSA), and bovine serum albumin (BSA), respectively. The detection limits were 0.02, 0.01, 0.02 for gamma-IgG, HSA and BSA, respectively. The method has been applied to analyze the total proteins in human samples and the results were in good agreement with those reported by the hospital. This method is sensitive, simple and potential in many areas.  相似文献   

17.
The determination of proteins with arsenazo-DBN and Al3+ by Rayleigh light-scattering (RLS) is described. The weak RLS of arsenazo-DBN and BSA can be enhanced greatly by addition of Al3+ in the pH range 5.3-7.0; this resulted in two enhanced RLS signals at 420-440 nm and 460-480 nm. The reaction between arsenazo-DBN, Al3+, and proteins was studied and a new method was developed for quantitative determination of proteins. This method is very sensitive (0.34-41.71 microg mL(-1) for bovine serum albumin, BSA, and 0.29-53.41 microg mL(-1) for human serum albumin, HSA), rapid (< 2 min), simple (one step), and tolerant of most interfering substances. The effects of different surfactants were also examined. When these proteins were determined in four human serum samples the maximum relative error was not more than 2% and the recovery was between 97 and 103%.  相似文献   

18.
A novel flow injection method with resonance light scattering detection was developed for the determination of total protein concentrations. This method is based on the enhancement of RLS signals from Methyl Blue (MB) by protein. The enhanced RLS intensities at 333 nm, in a pH 4.1 acidic aqueous solution, were proportional to the protein concentration over the range 2.0-37.3 and 1.0-36.0 microg ml-1 for human serum albumin (HSA) and bovine serum albumin (BSA), respectively. The corresponding limits of detection (3sigma) of 45 ng ml-1 for HSA and 80 ng ml-1 for BSA were attained. The method was successfully applied to the quantification of total proteins in human serum samples, the maximum relative error is less than 1% and the recovery is between 98% and 102%. The sample throughput was 60 h-1.  相似文献   

19.
Binding of quercetin to human serum albumin (HSA) was studied and the binding constant measured by following the red-shifted absorption spectrum of quercetin in the presence of HSA and the quenching of the intrinsic protein fluorescence in the presence of different concentrations of quercetin. Fluorescence lifetime measurements of HSA showed decrease in the average lifetimes indicating binding at a location, near the tryptophan moiety, and the possibility of fluorescence energy transfer between excited tryptophan and quercetin. Critical transfer distance (R o ) was determined, from which the mean distance between tryptophan-214 in HSA and quercetin was calculated. The above studies were also carried out with bovine serum albumin (BSA).  相似文献   

20.
The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 degrees C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the F?ster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号