首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ion-pair formation constant (K(MLA)(0) in mol(-1) dm(3)) for Li(B15C5)(+) with a picrate ion (Pic(-)) in water was determined by potentiometry with a K(+)-selective electrode at 25 degrees C and an ionic strength of 0, where B15C5 denotes benzo-15-crown-5 ether. Using the concentration equilibrium constants, K(MLA), estimated from this value, the extraction constants (mol(-2) dm(6) unit) of about ten diluents were re-calculated from previously reported extraction data. Also, the distribution constants of an ion-pair complex, Li(B15C5)Pic, between water and the diluents were re-estimated. A disagreement in the determined K(MLA) value between a solvent-extraction method and potentiometry was explained in terms of the Scatchard-Hildebrand equation; it came from the fact that the hydration of Li(I) in Li(B15C5)Pic was larger than that of free B15C5 in water. Then, the previously determined value by the former method was re-estimated using the potentiometric K(MLA) value.  相似文献   

2.
Sodium permanganate, sodium picrate (NaPic), Bu(4)NPic, Me(4)NPic, and Et(4)NPic were extracted at an ionic strength of 2 × 10(-5) to 0.08 mol dm(-3) and 25°C from water (w)-phases into the organic (o)-ones, 1,2-dichloroethane (DCE) and nitrobenzene (NB). Thereby, apparent distribution constants (K(D,±)) of the anions (A(-)) or the cations (M(+)) and ion-pair formation ones (K(MA)(org)) of the univalent salts (MA) in the o-phases were determined at 25 °C, where K(D,±) = ([A(-)](o)[M(+)](o)/[A(-)][M(+)])(1/2) = (K(D,A)K(D,M))(1/2) and K(MA)(org) = [MA](o)/[M(+)](o)[A(-)](o). Also, the K(ex) and K(D,MA) values with A(-) = Pic(-), MnO(4)(-) were estimated from the relations K(ex) (= [MA](o)/[M(+)][A(-)]) = K(MA)(org)(K(D,±))(2) and = K(MA)K(D,MA), respectively. Standard potentials (Δψ(tr)(0)) for ion transfers at the w/DCE and w/NB interfaces were evaluated from the log K(D,A) or log K(D,M) values by assuming the relations K(D,Pic) = K(D,Et4N) and = K(D,Me4N), respectively. The thus-obtained Δψ(tr)(0) values, especially for the w/DCE system, were in good agreement with the values based on the extra-thermodynamic assumption for Ph(4)As(+) and BPh(4)(-) transfers at the interfaces. In the present extraction systems, the ion-pair formation of MA in the w- and o-phases was less effective in the determination of their distribution constants into the two o-phases.  相似文献   

3.
Rare-earth metal alkyl tri(tert-butoxy)silanolate complexes [Ln{mu,eta2-OSi(O(t)Bu)3}(CH2SiMe3)2]2 (Ln = Y (1), Tb (2), Lu (3)) were prepared via protonolysis of the appropriate tris(alkyl) complex [Ln(CH2SiMe3)3(thf)2] with tri(tert-butoxy)silanol in pentane. Crystal structure analysis revealed a dinuclear structure for with square pyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta2-bridging coordination mode giving a 4-rung truncated ladder and non-crystallographic inversion centre. Addition of two equiv. of 12-crown-4 to a pentane solution of 1 or 3 respectively gave [Ln{OSi(O(t)Bu)(3)}(CH2SiMe3)2(12-crown-4)].12-crown-4 (Ln = Y (4), Lu (5)). Crystal structure analysis of 5 showed a slightly distorted octahedral geometry at the lutetium centre. The silanolate ligand adopts an eta(1)-terminal coordination mode, whilst the crown ether unit coordinates in an unusual kappa3-fashion. Reaction of 1-3 with [NEt3H]+[BPh4]- in thf yielded the cationic derivatives [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[BPh4]- (Ln = Y (6), Tb (7) and Lu (8)); coordination of crown ether led to compounds of the form [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(L)(thf)n]+[BPh4]- (Ln = Y, Lu, L = 12-crown-4, n = 1 (9,10); Ln = Y, Lu, L = 15-crown-5, n = 0 (11,12)). Reaction of 1 with [NMe2PhH]+[B(C6F5)4]-, [Al(CH2SiMe3)3] or BPh3 in thf gave the ion pairs [Y{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[A]- ([A]- = [B(C6F5)4]- (13), [Al(CH2SiMe3)4]- (14), [BPh3(CH2SiMe3)]- (15)), whilst two equiv. [NMe2PhH]+[BPh4]- with 1 in thf produced the dicationic ion triple [Y{OSi(O(t)Bu)3}(thf)6]2+[BPh4]-2 (16). Crystal structure analysis revealed that 16 is mononuclear with pentagonal bipyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta(1)-terminal fashion. All diamagnetic compounds have been characterized by NMR spectroscopy. 1, 3, 4, 6 and 13 were tested as olefin hydrosilylation pre-catalysts with a variety of substrates; 1 was found to be highly active in 1-decene hydrosilylation.  相似文献   

4.
The ion-pair formation constants {K(j)(0): j = MA (metal salt), MLA} of NaO(2)CCF(3) (Na(+)tfa(-)) and its ion-pair complexes (MLA) in water (w) were determined potentiometrically at 25 degrees C and an ionic strength (I) of zero. 15-Crown-5 (15C5), 18-crown-6 ethers (18C6), and their mono-benzo derivatives were used as crown ethers (L). The extraction of Natfa by these four L from w into 1,2-dichloroethane was done at 25 degrees C, and then the extraction constants (K(ex)) for NaLtfa were calculated by using the K(j) values, which were estimated from the corresponding K(j)(0) ones at I of the w-phases, and other equilibrium constants. Also, the distribution constants (K(D,MLA)) of NaLtfa between the two phases were obtained from a thermodynamic cycle expressing K(ex). An interaction of w-molecules with NaLA was considered using a relation of log K(D,MLA) with log K(D,L), derived from the Scatchard-Hildebrand equation, where K(D,L) denotes the distribution constant of L between the two phases. The interaction increased in the order of NaL (picrate) < free L 相似文献   

5.
Katsuta S  Kanazawa M  Takeda Y  Ouchi M 《Talanta》1999,49(4):785-791
The overall extraction equilibrium constants (K(ex)) of picrates of Li(+), Na(+), K(+), Rb(+), Cs(+), Ag(+), Tl(+), and Sr(2+)with 19-crown-6 (19C6) were determined between benzene and water at 25 degrees C. The K(ex) values were analyzed into the constituent equilibrium constants, i.e. the extraction constant of picric acid, the distribution constant of the crown ether, the formation constant of the metal ion-crown ether complex in water, and the ion-pair extraction constant of the complex cation with the picrate anion. The effects of an extra methylene group of 19C6 on the extraction ability and selectivity are discussed in detail by comparing the constituent equilibrium constants of 19C6 with those of 18-crown-6 (18C6). The K(ex) value of 19C6 for each metal ion is lower than that of 18C6, which is mostly attributed to the higher lipophilicity of 19C6. The extraction ability of 19C6 for the univalent metal ions decreases in the order Tl(+)>K(+)>Rb(+)>Ag(+)>Cs(+)>Na(+)Li(+), which is the same as that observed for 18C6. The difference in logK(ex) between the univalent metals is generally smaller for 19C6 than for 18C6. The extraction selectivity of 19C6 is governed by the selectivity in the ion-pair extraction, whereas that of 18C6 depends on both the selectivities in the ion-pair extraction and in the complexation in water.  相似文献   

6.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

7.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

8.
We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of dibenzo-18-crown-6 (DB18C6) complexes with alkali metal ions (Li(+), Na(+), K(+), Rb(+), and Cs(+)) in a cold, 22-pole ion trap. All the complexes show a number of vibronically resolved UV bands in the 36,000-38,000 cm(-1) region. The Li(+) and Na(+) complexes each exhibit two stable conformations in the cold ion trap (as verified by IR-UV double resonance), whereas the K(+), Rb(+), and Cs(+) complexes exist in a single conformation. We analyze the structure of the conformers with the aid of density functional theory (DFT) calculations. In the Li(+) and Na(+) complexes, DB18C6 distorts the ether ring to fit the cavity size to the small diameter of Li(+) and Na(+). In the complexes with K(+), Rb(+), and Cs(+), DB18C6 adopts a boat-type (C(2v)) open conformation. The K(+) ion is captured in the cavity of the open conformer thanks to the optimum matching between the cavity size and the ion diameter. The Rb(+) and Cs(+) ions sit on top of the ether ring because they are too large to enter the cavity of the open conformer. According to time-dependent DFT calculations, complexes that are highly distorted to hold metal ions open the ether ring upon S(1)-S(0) excitation, and this is confirmed by extensive low-frequency progressions in the UVPD spectra.  相似文献   

9.
Receptor-containing polynuclear mixed-metal complexes of gold(I)-copper(I) 1-3 based on a [{Au(3)Cu(2)(C≡CPh)(6)}Au(3){PPh(2)-C(6)H(4)-PPh(2)}(3)](2+) (Au(6)Cu(2)) core with benzo-15-crown-5, oligoether and urea binding sites were designed and synthesized, respectively. These complexes exhibited remarkably strong red emission at ca. 619-630 nm in dichloromethane solution at room temperature upon photoexcitation at λ > 400 nm, with the emission quantum yield in the range 0.59-0.85. The cation-binding properties of 1 and 2 and the anion-binding properties of 3 were studied using UV-vis, emission and (1)H NMR techniques. Complex 1, with six benzo-15-crown-5 pendants, was found to show a higher binding preference for K(+), with a selectivity trend of K(+)? Cs(+) > Na(+) > Li(+). The addition of metal ions (Li(+), Na(+), K(+) and Cs(+)) to complex 1 led to a modest emission enhancement with a concomitant slight blue shift in energy and well-defined isoemissive points, which is attributed to the rigidity of the structure and the inhibited PET (photo-induced electron transfer) process from the oxygen to the aggregate as a result of the binding of the metal ion. The six urea receptor groups on complex 3 were found to form multiple hydrogen bonding interactions with anions, with the positive charge providing additional electrostatic interaction for anion-binding. The anion selectivity of 3 follows the trend F(-) > Cl(-)≈ H(2)PO(4)(-) > Br(-) and the highest affinity towards F(-) is attributed to the stronger basicity of F(-), as well as its good size match with the cavity of the urea pocket.  相似文献   

10.
The reaction of a slurry of BaBr(2) in a minimal amount of tetrahydrofuran (THF) with 2 equiv of Na(H(3)BNMe(2)BH(3)) in diethyl ether followed by crystallization from diethyl ether at -20 °C yields crystals of Ba(H(3)BNMe(2)BH(3))(2)(Et(2)O)(2) (1). Drying 1 at room temperature under vacuum gives the partially desolvated analogue Ba(H(3)BNMe(2)BH(3))(2)(Et(2)O)(x) (1') as a free-flowing white solid, where the value of x varies from <0.1 to about 0.4 depending on whether desolvation is carried out with or without heating. The reaction of 1 or 1' with Lewis bases that bind more strongly to barium than diethyl ether results in the formation of new complexes Ba(H(3)BNMe(2)BH(3))(2)(L), where L = 1,2-dimethoxyethane (2), N,N,N',N'-tetramethylethylenediamine (3), 12-crown-4 (4), 18-crown-6 (5), N,N,N',N'-tetraethylethylenediamine (6), and N,N,N',N",N"-pentamethylethylenetriamine (7). Recrystallization of 4 and 5 from THF affords the related compounds Ba(H(3)BNMe(2)BH(3))(2)(12-crown-4)(THF)·THF (4') and Ba(H(3)BNMe(2)BH(3))(2)(18-crown-6)·2THF (5'). In addition, the reaction of BaBr(2) with 2 equiv of Na(H(3)BNMe(2)BH(3)) in the presence of diglyme yields Ba(H(3)BNMe(2)BH(3))(2)(diglyme)(2) (8), and the reaction of 1 with 15-crown-5 affords the diadduct [Ba(15-crown-5)(2)][H(3)BNMe(2)BH(3)](2) (9). Finally, the reaction of BaBr(2) with Na(H(3)BNMe(2)BH(3)) in THF, followed by the addition of 12-crown-4, affords the unusual salt [Na(12-crown-4)(2)][Ba(H(3)BNMe(2)BH(3))(3)(THF)(2)] (10). All of these complexes have been characterized by IR and (1)H and (11)B NMR spectroscopy, and the structures of compounds 1-3, 4', 5', and 6-10 have been determined by single-crystal X-ray diffraction. As the steric demand of the Lewis bases increases, the structure changes from polymers to dimers to monomers and then to charge-separated species. Despite the fact that several of the barium complexes are monomeric in the solid state, none is appreciably volatile up to 200 °C at 10(-2) Torr.  相似文献   

11.
毛江高  金钟声 《结构化学》1994,13(4):276-280
CrystalStructuresofLn(NO_3)_3(Ln=La,Yb)Complexeswith12-crown-4MaoJiang-Gao;JinZhong-Sheng;YuFeng-Lan(LaboratoryofRareEarthChem...  相似文献   

12.
Liquid-liquid extractive-spectrophotometric studies of sodium ion complexes of 18-crown-6(18C6), dibenzo-18-crown-6(DB18C6), 15-crown-5(15C5), and 12-crown-4(12C4) and anionic dyes [4-(2-pyridylazo)-resorcinol monosodium salt monohydrate (PAR), Eriochrom Black T (EBT), and methyl orange (MOR)] and sodium picrate (PICRAT) as the counter ion are described. The overall extraction equilibrium constants for the 1 : 1 complexes of the above crown ethers with sodium dyes between different organic solvents and water have been determined at 25deg;C. They were conducted in various solvent-water systems maintaining an identical initial cation concentration in water, [M0+]w, and macrocyclic ligand concentration in the organic phase, [L0]org}, so that in all extractions [M0+]w : [L0]org ratios were 1 : 1, 1 : 10, 1 : 20, 1 : 50, and 1 : 62.5. An ion association complex formed between the sodium-crown ether complex ion and a dye anion was extracted into the organic solvent, and then the dye concentration of the separated aqueous phase was measured with an ultraviolet-visible spectrophotometer. PAR was the best associated dye with all crown ethers sodium-dyes and the extracted dye occurs as the ion-pair complex. Methylene chloride was found to be better than other extractive solvents used in this study.  相似文献   

13.
Copper(I) complexes with the tris(2-pyridylmethyl)amine (TPMA) ligand were synthesized and characterized to examine the effect of counteranions (Br(-), ClO(4)(-), and BPh(4)(-)), as well as auxiliary ligands (CH(3)CN, 4,4'-dipyridyl, and PPh(3)) on the molecular structures in both solid state and solution. Partial dissociation of one of the pyridyl arms in TPMA was not observed when small auxiliary ligands such as CH(3)CN or Br(-) were coordinated to copper(I), but was found to occur with larger ones such as PPh(3) or 4,4'-dipyridyl. All complexes were found to adopt a distorted tetrahedral geometry, with the exception of [Cu(I)(TPMA)][BPh(4)], which was found to be trigonal pyramidal because of stabilization via a long cuprophilic interaction with a bond length of 2.8323(12) ?. Copper(II) complexes with the general formula [Cu(II)(TPMA)X][Y] (X = Cl(-), Br(-) and Y = ClO(4)(-), BPh(4)(-)) were also synthesized to examine the effect of different counterions on the geometry of [Cu(II)(TPMA)X](+) cation, and were found to be isostructural with previously reported [Cu(II)(TPMA)X][X] (X = Cl(-) or Br(-)) complexes.  相似文献   

14.
Takeda Y  Ikeo N  Sakata N 《Talanta》1991,38(11):1325-1333
Enthalpy and entropy changes for ion-pair extractions of tetraalkylammonium ions (R(4)N(+)) with picrate anions, overall extractions of s-block metal picrates with 15-crown-5 (15C5) and 18-crown-6 (18C6) and the partition of 15C5 itself were determined between chloroform and water. The distribution behaviour of crown ethers and the extraction process of s-block metal picrates with the crown ethers are discussed in detail on molecular grounds from the thermodynamic point of view. Moreover, enthalpy and entropy changes for ion-pair extractions of 1:1 15C5- and 18C6-s-block metal ion complexes with picrate anions are calculated from these experimental thermodynamic parameters and the literature values for complex-formation reactions of the crown ethers with the s-block metal ions in water. Enthalpy and entropy changes are negative for overall extractions of all the s-block metal picrates with 15C5 and 18C6. The extractions of the metal picrates with 15C5 and 18C6 at 25 degrees are completely enthalpy driven. Plots of thermodynamic parameters for ion-pair extractions of R(4)NA vs. the number of carbon atoms of R(4)N(+) show a linear relationship. From these experimental data, contributions of a methylene group and an ether oxygen atom to the thermodynamic parameters of the ion-pair extraction of R(4)NA and the partition of the crown ethers, respectively, between chloroform and water were obtained. Enthalpy and entropy changes for ion-pair extractions of 15C5- and 18C6-s-block metal picrate complexes were compared with those of R(4)NA. A striking difference in the ion-pair extraction process was found between the crown ether complexes and R(4)NA.  相似文献   

15.
Syntheses of alkali metal adducts [LVO(2)M(H(2)O)(n)] (1-7) (M = Na(+), K(+), Rb(+), and Cs(+); L = L(1)(-)L(3)) of anionic cis-dioxovanadium(V) species (LVO(2)(-)) of tridentate dithiocarbazate-based Schiff base ligands H(2)L (S-methyl-3-((5-(R-2-hydroxyphenyl))methyl)dithiocarbazate, R = H, L = L(1); R = NO(2), L = L(2); R = Br, L = L(3)) have been reported. The LVO(2)(-) moieties here behave like an analogue of carboxylate group and have displayed interesting variations in their binding pattern with the change in size of the alkali metal ions as revealed in the solid state from the X-ray crystallographic analysis of 1, 3, 6, and 7. The compounds have extended chain structures, forming ion channels, and are stabilized by strong Coulombic and hydrogen-bonded interactions. The number of coordinated water molecules in [LVO(2)M(H(2)O)(n)] decreases as the charge density on the alkali metal ion decreases (n = 3.5 for Na(+) and 1 for K(+) and Rb(+), while, for Cs(+), no coordinated water molecule is present). In solution, compounds 1-7 are stable in water and methanol, while in aprotic solvents of higher donor strengths, viz. CH(3)CN, DMF and DMSO, they undergo photoinduced reduction when exposed to visible light, yielding green solutions from their initial yellow color. The putative product is a mixed-oxidation (mu-oxo)divanadium(IV/V) species as revealed from EPR, electronic spectroscopy, dynamic (1)H NMR, and redox studies.  相似文献   

16.
The synthesis and structures of lanthanide complexes supported by benzoxazine-functionalized amine bridged bis(phenolate) ligand 6,6'-(2-(8-tert-butyl-6-methyl-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethylazanediyl)bis(methylene)bis(2-tert-butyl-4-methylphenolato) (L(2-)) are described. Salt metathesis reaction between lanthanide trichloride and 2 eq of LNa(2) in THF at room temperature afforded the corresponding "ate" complexes [L(2)LnNa(THF)(2)] (Ln[double bond, length as m-dash]Y (1), Nd (2), Er (3), Yb (4)). Further treatment of the product with 18-crown-6 afforded discrete ion-pair complexes [L(2)Ln][(18-crown-6)Na(THF)(2)] (Ln[double bond, length as m-dash]Y (5), Yb (6)). The single-crystal structural analyses of 1 and 3-6 revealed that the lanthanide cation and the sodium cation were bridged by two phenolate oxygen atoms in complexes 1, 3 and 4, while in complexes 5 and 6, the anion comprises a lanthanide cation coordinated by two L(2-) and the cation is comprised of a sodium cation surrounded by an 18-crown-6 and two THF molecules. These complexes were found to exhibit distinct activities towards the ring-opening polymerization of ε-caprolactone and l-lactide.  相似文献   

17.
Addition of 1 equiv of potassium metal to a tetrahydrofuran (THF) solution of Zn(2)(4,4'-bipyridine)(mes)(4) (1; mes =2,4,6-Me(3)C(6)H(2)) in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) yielded the radical anionic species [Zn(2)(4,4'-bipyridine)(mes)(4)](?-), which was characterized by single crystal X-ray diffraction in [K(18-crown-6)(THF)(2)][Zn(2)(4,4'-bipyridine)(mes)(4)] (2). A similar reaction employing 2 equiv of alkali metal afforded the related complex [K(18-crown-6)](2)[Zn(2)(4,4'-bipyridine)(mes)(4)] (3). The [Zn(2)(4,4'-bipyridine)(mes)(4)](n-) (n = 0-2) moieties present in 1-3 are largely isostructural, yet exhibit significant structural variations which arise because of differences in their electronic structure. These species represent a homologous series of complexes in which the ligand exists in three distinct oxidation states. Structural data, spectroscopic measurements, and density functional theory (DFT) calculations are consistent with the assignment of 1, 2, and 3 as complexes of the neutral, radical anionic, and dianionic 4,4'-bipyridyl ligand, respectively. To the best of our knowledge, species 2 and 3 are the first crystallographically characterized transition metal complexes of the 4,4'-bipyridyl radical and dianion.  相似文献   

18.
A differential pulse voltammetric study of complexes of Cd(II) and Pb(II) with crown ethers is reported. Measured log K(1) values for Cd(II) with 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane), 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane), and 12-crown-4 (1,4,7,10-tetraoxacyclododecane) are respectively 2.53 (+/-0.06), 1.97 (+/-0.07), and 1.72 (+/-0.08) and for Pb(II) with 18-crown-6 is 4.17 (+/-0.03), all at 25 degrees C in 0.1 M LiNO(3). Cd(II) is smaller than is usually associated with strong bonding with crown ethers. The high log K(1) values for Cd(2+) with crown ethers found here are discussed in terms of distortion of Cd(II) by relativistic effects. The resulting plasticity of the coordination geometry of the Cd(II) ion allows it to meet the metal ion size requirements of all the crown ethers, allowing high log K(1) values to occur. Crystal structures for [Cd(bz-18-crown-6)(SCN)(2)] (1) (bz-18-crown-6 = benzo-1,4,7,10,13,16-hexaoxacyclooctadecane) and [K(18-crown-6)][Cd(SCN)(3)] (2) are reported. 1 was triclinic, space group P1, a = 8.5413(2), b = 10.0389(2), and c = 13.4644(2) A, alpha = 94.424(1), beta = 102.286(1), and gamma = 93.236(1) degrees, Z = 2, and final R = 0.023. 2 was orthorhombic, space group Cmc2(1), a = 14.7309(3), b = 15.1647(3), and c = 10.6154(2) A, Z = 4, and final R = 0.020. In 1, the Cd occupies the cavity of the bz-18-crown-6 with long average Cd-O bond lengths of 2.65 A and is N-bonded to the thiocyanates with short average Cd-N bonds of 2.12 A. In [Cd(bz-18-crown-6)(SCN)(2)], the linear coordination involving the Cd and the two N-bonded thiocyanate groups in 1 is discussed in terms of the role of relativistic effects in the tendency to linear coordination geometry in group 12 metal ions. In 2 Cd forms a polymeric structure involving thiocyanate bridges between Cd atoms and K(+) occupies the cavity of the crown ether. 2 highlights the fact that cadmium is almost never S-bonded to thiocyanate except in bridging thiocyanates.  相似文献   

19.
To expand the limited range of rare-earth metal cationic alkyl complexes known, a series of mono- and dicationic trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands with [BPh4]-, [BPh3(CH2SiMe3)]-, [B(C6F5)4]-, [B(C6F5)3(CH2SiMe3)]-, and [Al(CH2SiMe3)4]- anions were prepared from corresponding neutral precursors [Ln(CH2SiMe3)3Ln] (Ln = Sc, Y, Lu; L = THF, n = 2 or 3; L = 12-crown-4, n = 1) as solvent-separated ion pairs. The syntheses of the monocationic derivatives [Ln(CH2SiMe3)2(12-crown-4)n(THF)m]+[A]- are all high yielding and proceed rapidly in THF solution at room temperature. A "one pot" procedure using the neutral species directly for the syntheses of a number of lutetium and yttrium dicationic derivatives [Ln(CH2SiMe3)(12-crown-4)n(THF)m]2+[A]-2 with a variety of different anions, a class of compounds previously limited to just a few examples, is presented. When BPh3 is used to generate the ion triple, the presence of 12-crown-4 is required for complete conversion. Addition of a second equiv of 12-crown-4 and a third equiv of [NMe2PhH]+[B(C6F5)4]- abstracts a third alkyl group from [Ln(CH2SiMe3)(12-crown-4)2(THF)x]2+[B(C6F5)4]-2 (Ln = Y, Lu). X-ray crystallography and variable-temperature (VT) NMR spectroscopy reveal a structural diversity within the known series of neutral 12-crown-4 supported tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(12-crown-4)] (Ln = Sc, Y, Sm, Gd-Lu) in the solid and solution states. The X-ray structure of [Sc(CH2SiMe3)3(12-crown-4)] exhibits incomplete 12-crown-4 coordination. VT NMR spectroscopy indicates fluxional 12-crown-4 coordination on the NMR time scale. X-ray crystallography of only the second structurally characterized dicationic rare-earth metal alkyl complex [Y(CH2SiMe3)(12-crown-4)(THF)3]2+[BPh4]-2 shows exocyclic 12-crown-4 coordination at the 8-coordinate metal center with well separated counteranions. 11B and 19F NMR spectroscopy of all mono- and dicationic rare-earth metal complexes reported demonstrate that the anions are symmetrical and noncoordinating on the NMR time scale. A series of trends within the 1H and 13C{1H} NMR resonances arising from the Ln-CH2 groups and, in the case of yttrium, the 1JYC coupling constants at the Y-CH2 group and the 89Y chemical shift values are discussed.  相似文献   

20.
Li CK  Lu XX  Wong KM  Chan CL  Zhu N  Yam VW 《Inorganic chemistry》2004,43(23):7421-7430
A series of luminescent dinuclear gold(I) complexes with different crown ether pendants, [Au(2)(PwedgeP)(S-B15C5)(2)] [S-B15C5 = 4'-mercaptobenzo-15-crown-5, P(wedge)P = bis(dicyclohexylphosphino)methane (dcpm) (1), bis(diphenylphosphino)methane (dppm) (2)] and [Au(2)(P(wedge)P)(S-B18C6)(2)] [S-B18C6 = 4'-mercaptobenzo-18-crown-6, P(wedge)P = dcpm (3), dppm (4)], and their related crown-free complexes, [Au(2)(P(wedge)P)(SC(6)H(3)(OMe)(2)-3,4)(2)] [P(wedge)P = dcpm (5), dppm (6)], were synthesized. The low-energy emission of the mercaptocrown ether-containing gold(I) complexes are tentatively assigned as originated from states derived from a S --> Au ligand-to-metal charge transfer (LMCT) transition. The crown ether-containing gold(I) complexes showed specific binding abilities toward various metal cations according to the ring size of the crown pendants. Spectroscopic evidence was provided for the metal-ion-induced switching on of the gold...gold interactions upon the binding of particular metal ions in a sandwich binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号