首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Su J  Ren K  Dai W  Zhao Y  Zhou J  Wu H 《Electrophoresis》2011,32(23):3324-3330
We present a microfluidic system that can be directly coupled with microwell array and perform parallel electrophoresis in multiple capillaries simultaneously. The system is based on an array of glass capillaries, fixed in a polydimethylsiloxane (PDMS) microfluidic scaffold, with one end open for interfacing with microwells. In this capillary array, every two adjacent capillaries act as a pair to be coupled with one microwell; samples in the microwells are introduced and separated by simply applying voltage between two electrodes that are placed at the other ends of capillaries; thus no complicated circuit design is required. We evaluate the performance of this system and perform multiple CE with direct sample introduction from microwell array. Also with this system, we demonstrate the analysis of cellular contents of cells lysed in a microwell array. Our results show that this prototypic system is a promising platform for high-throughput analysis of samples in microwell arrays.  相似文献   

2.
Flow-through chip thermocyclers can be used in miniaturized rapid polymerase chain reaction (PCR) despite their high surface to volume ratio of samples. We demonstrated that a thermocycler made of silicon and glass chips and containing thin film transducers for heating and temperature control can be adapted to the amplification of various DNA templates of different sources and properties. Therefore, the concept of serial flow in a liquid/liquid two-phase system was combined with a surface management of inner side walls of the microchannel and an adaptation of PCR mixture composition. In addition, the process temperatures and the flow rates were optimized. Thus, a synthetic template originating from investigations on nucleic acid evolution with 106 base pairs [cooperative amplification of templates by cross hybridization (CATCH)], a house keeping gene with 379 base pairs [glutaraldehyde 3-phosphate dehydrogenase (GAPDH)] and a zinc finger protein relevant in human pathogenesis with 700 base pairs [Myc-interacting zinc finger protein-1, knock-out (Miz1-KO)] were amplified successfully. In all three cases the selectivity of priming and amplification could be shown by gel electrophoresis. The typical amplification time was 1 min per temperature cycle. So, the typical residence time of a sample volume inside the 25 cycle device amounts to less then half an hour. The energy consumption of the PCR chip for a 35 min PCR process amounts to less than 0.012 kW h.  相似文献   

3.
《中国化学快报》2021,32(11):3446-3449
Single-cell imaging, a powerful analytical method to study single-cell behavior, such as gene expression and protein profiling, provides an essential basis for modern medical diagnosis. The coding and localization function of microfluidic chips has been developed and applied in living single-cell imaging in recent years. Simultaneously, chip-based living single-cell imaging is also limited by complicated trapping steps, low cell utilization, and difficult high-resolution imaging. To solve these problems, an ultra-thin temperature-controllable microwell array chip (UTCMA chip) was designed to develop a living single-cell workstation in this study for continuous on-chip culture and real-time high-resolution imaging of living single cells. The chip-based on ultra-thin ITO glass is highly matched with an inverted microscope (or confocal microscope) with a high magnification objective (100 × oil lens), and the temperature of the chip can be controlled by combining it with a home-made temperature control device. High-throughput single-cell patterning is realized in one step when the microwell array on the chip uses hydrophilic glass as the substrate and hydrophobic SU-8 photoresist as the wall. The cell utilization rate, single-cell capture rate, and microwell occupancy rate are all close to 100% in the microwell array. This method will be useful in rare single-cell research, extending its application in the biological and medical-related fields, such as early diagnosis of disease, personalized therapy, and research-based on single-cell analysis.  相似文献   

4.
Large-scale genotyping, mapping and expression profiling require affordable, fully automated high-throughput devices enabling rapid, high-performance analysis using minute quantities of reagents. In this paper, we describe a new combination of microwell polymerase chain reaction (PCR) based DNA amplification technique with automated ultrathin-layer gel electrophoresis analysis of the resulting products. This technique decreases the reagent consumption (total reaction volume 0.75-1 microL), the time requirement of the PCR (15-20 min) and subsequent ultrathin-layer gel electrophoresis based fragment analysis (5 min) by automating the current manual procedure and reducing the human intervention using sample loading robots and computerized real time data analysis. Small aliquots (0.2 microL) of the submicroliter size PCR reaction were transferred onto loading membranes and analyzed by ultrathin-layer gel electrophoresis which is a novel, high-performance and automated microseparation technique. This system employs integrated scanning laser-induced fluorescence-avalanche photodiode detection and combines the advantages of conventional slab and capillary gel electrophoresis. Visualization of the DNA fragments was accomplished by "in migratio" complexation with ethidium bromide during the electrophoresis process also enabling real time imaging and data analysis.  相似文献   

5.
利用商品化ITO玻璃导电层的温阻效应, 无需任何微加工手段, 实现了自加热和传感的芯片温度自动程序控制, 最大程度地减小了传感滞后对温度控制稳定性的影响, 温度控制的稳定性达到了0.2 ℃, 升温速度最快可达20 ℃/s以上, 在冷却风扇辅助下降温速度最快达到了8 ℃/s. 芯片温控单元的引线从传统的两对(一对用于传感, 一对用于加热)减少为一对. 通过在该芯片上直接构建多个开放微池反应器的方法成功地实现了λDNA 157 bp片段的并行扩增. 将该芯片置于倒置荧光显微镜样品台上, 以蓝色(575 nm)发光二极管为光源, 以光电倍增管为检测手段检测了dsDNA和SYBR Green Ⅰ嵌合物的荧光强度随温度的实时变化曲线.  相似文献   

6.
化学发光单孵多层免疫技术检测粪样中轮状病毒   总被引:3,自引:0,他引:3  
以酶联免疫吸附分析(ELISA)夹心测定粪样中轮状病毒(RV)实验为模型,将传统又孵式免疫操作变成单孵式,即在包被RV抗体Ab的微孔中同时加入含RV的粪样上清液和根过氧化物酶(HRP)标记抗RV抗原共同孵育,其结果在载体表面形成多层酶免疫复合物,以HRP催化鲁米诺-对碘苯酚-过氧化氢化学体系作为最终信号检测系统,从而建立起化学发光单孵多层免疫技术(CL-SIMIT)。其灵敏度是ELISA的16倍,  相似文献   

7.
组装了由注射泵进样系统、微流控芯片和三温区加热器组成的流动型PCR扩增系统,该系统具有扩增速度快、交叉污染小、芯片可重复使用和操作方便等特点.优化了芯片厚度、隔热材料和流速等影响PCR扩增的因素.在4.9min内经24个循环成功地扩增了浓度为1ng/100μL的λ-DNA(500bp).  相似文献   

8.
对国产原子荧光仪进样系统进行改造,采用在线热解样品捕汞金管富集冷原子荧光法测定空调颗粒物中的汞。试样热解温度为700~750℃,捕汞金管释放温度为550℃,试样载气流速为120 mL/min。方法检出限为1 pg,汞含量在0~1.5 ng范围内呈线性关系,测定标准偏差为2.23%。用国家土壤标准GBW07410中的汞验证了方法的准确性,并对某医院空调颗粒物中汞含量进行了分析。  相似文献   

9.
In this paper, direct whole blood PCR amplifications on a static chip thermostat without sample purifications are demonstrated; in these amplifications, problems such as cross-interferences and contaminations could be avoided. The amplification conditions, such as the compositions of reagents and thermal programs, were investigated systematically by a GeneAmp PCR system with a native p53 gene segment (about543 bp) of human genome and an exterior lambda DNA segment (about 500 bp) as targets. Direct amplifications of p53 and K-ras (about 157 bp) gene segments from 0.5 μL blood samples were successfully demonstrated by a static PCR chip with an indium tin oxide glass substrate. The chip thermostat has a typical size of 25 mm × 25 mm, and a polyethylene tube was used as the PCR vial on the glass surface of the chip. Fuzzy proportional integration–differentiation algorithms were adopted in temperature controls of the chip with an aid of a micro-Pt100 sensor. In the direct PCR with the thermostat chip, the whole process only involves automatic thermal programs. This work demonstrated that a chip PCR for field test without desktop facilities is possible either for a point of care test or for forensic analysis. Figure Photo of the glass static thermostat chip with 2 PCR reaction vials Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A new custom-built Peltier-cooled laser ablation cell is described. The proposed cryogenic cell combines a small internal volume (20 cm3) with a unique and reliable on-sample temperature control. The use of a flexible temperature sensor, directly located on the sample surface, ensures a rigorous sample temperature control throughout the entire analysis time and allows instant response to any possible fluctuation. In this way sample integrity and, therefore, reproducibility can be guaranteed during the ablation. The refrigeration of the proposed cryogenic cell combines an internal refrigeration system, controlled by a sensitive thermocouple, with an external refrigeration system. Cooling of the sample is directly carried out by 8 small (1 cm × 1 cm) Peltier elements placed in a circular arrangement in the base of the cell. These Peltier elements are located below a copper plate where the sample is placed. Due to the small size of the cooling electronics and their circular allocation it was possible to maintain a peephole under the sample for illumination allowing a much better visualization of the sample, a factor especially important when working with structurally complex tissue sections. The analytical performance of the cryogenic cell was studied using a glass reference material (SRM NIST 612) at room temperature and at −20 °C. The proposed cell design shows a reasonable signal washout (signal decay within less than 10 s to background level), high sensitivity and good signal stability (in the range 6.6–11.7%). Furthermore, high precision (0.4–2.6%) and accuracy (0.3–3.9%) in the isotope ratio measurements were also observed operating the cell both at room temperature and at −20 °C. Finally, experimental results obtained for the cell application to qualitative elemental imaging of structurally complex tissue samples (e.g. eye sections from a native frozen porcine eye and fresh flower leaves) demonstrate that working in cryogenic conditions is critical in such type of direct sample analysis.  相似文献   

11.

The refrigerant R134a is to be phasing out soon in automobile air conditioning applications due to its high global warming potential of 1430. Hence, it is essential to identify a sustainable alternative refrigerant to phase out R134a in automobile air conditioners. This paper presents the experimental thermodynamic performance of R430A (composed of R152a and R600a, in the ratio of 76:24, by mass) as a drop-in substitute to replace R134a in automobile air conditioners. The experiments were carried out in an automobile air conditioner test setup equipped with a variable frequency drive electrical motor. During experimentation, the ambient temperature and ambient relative humidity were maintained at 35?±?1 °C and 65?±?5%, respectively. The compressor speed was varied in the range between 1000 and 3000 rpm. The results showed that the coefficient of performance of an automobile air conditioner working with R430A was found to be 12–20% higher with 6–11% reduced compressor power consumption when compared to R134a. The R430A has 2–6 °C higher compressor discharge temperature when compared to R134a. The physical stability of the lubricant used in the compressor was retained while operating with R430A. The maximum exergy destruction occurs in the compressor (0.28 kW for R134a and 0.24 kW for R430A) followed by evaporator (0.16 kW for R134a and 0.14 kW for R430A), condenser (0.14 for R134a and 0.12 kW for R430A) and expansion valve (0.043 kW for R134a and 0.039 kW for R430A) at a compressor speed of 1000?±?10 rpm. The exergy destruction of the system operating with R430A was found to be 12–28% lower when compared to R134a systems due to its favorable thermo-physical properties. The total equivalent warming impact of R430A was found to be lower when compared to R134a by about 47.3%, 35% and 32.4% for LPG, petrol and diesel vehicles, respectively. The results confirmed that R430A is a good drop-in substitute to replace R134a in existing automobile air conditioning systems.

  相似文献   

12.
This paper describes a prototype instrument for high-throughput fraction collection with capillary array electrophoresis (CAE). The design of the system was based on a comprehensive collection approach, in which fractions from all capillaries were simultaneously collected in individual collection microwells in predefined time intervals. The location of the fractions in the microwells on the collection plate was determined by monitoring the individual zone velocities close to the end of each capillary. The collection microwell plate was fabricated from buffer-saturated agarose gel, which maintained permanent electrical contact with the separation capillaries during the collection process. Since the collection gel plate consisted of over 90% water, liquid evaporation from the collection wells was minimized. A 12-capillary array instrument was built with two-point detection using a side illumination scheme. The collection performance was demonstrated by reinjection of selected fractions of a double-stranded DNA (dsDNA) separation. The identity of collected DNA fragments was confirmed by PCR and sequencing.  相似文献   

13.
The rapid development of many genetically modified (GM) crops in the past two decades makes it necessary to introduce an alternative strategy for routine screening and identification. In this study, we established a universal multiplex PCR detection system which will effectively reduce the number of reactions needed for sample identification. The PCR targets of this system include the six most frequently used transgenic elements: cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptII) gene, the 5-enolpyruvylshikimate-3-phosphate synthase (CP4 epsps) gene of Agrobacterium tumefaciens strain CP4, and the phosphinothricin N-acetyltransferase (pat) gene. According to the AGBIOS database, the coverage of this detection system is 93% of commercial GM crops. This detection system could detect all certified reference materials (CRMs) at the 1.0% level. The correct combination of all the CRM amplicon patterns proved the specificity of this multiplex PCR system. Furthermore, the amplicon patterns of this multiplex PCR detection system could be used as an index of classification which will narrow the range of possible GM products. The simulation result of this multiplex PCR detection system on all commercialized 139 GM products in the AGBIOS database showed that the maximum number of PCR reactions needed to identify an unknown sample can be reduced to 13. In this study, we established a high-throughput multiplex PCR detection system with feasible sensitivity, specificity, and cost. By incorporating this detection system, the routine GM crop-detection process will meet the challenges resulting from a rapid increase in the number of GM crops in the future.  相似文献   

14.
The growing importance of analyzing the human genome to detect hereditary and infectious diseases associated with specific DNA sequences has motivated us to develop automated devices to integrate sample preparation, real-time PCR, and microchannel electrophoresis (MCE). In this report, we present results from an optimized compact system capable of processing a raw sample of blood, extracting the DNA, and performing a multiplexed PCR reaction. Finally, an innovative electrophoretic separation was performed on the post-PCR products using a unique MCE system. The sample preparation system extracted and lysed white blood cells (WBC) from whole blood, producing DNA of sufficient quantity and quality for a polymerase chain reaction (PCR). Separation of multiple amplicons was achieved in a microfabricated channel 30 microm x 100 microm in cross section and 85 mm in length filled with a replaceable methyl cellulose matrix operated under denaturing conditions at 50 degrees C. By incorporating fluorescent-labeled primers in the PCR, the amplicons were identified by a two-color (multiplexed) fluorescence detection system. Two base-pair resolution of single-stranded DNA (PCR products) was achieved. We believe that this integrated system provides a unique solution for DNA analysis.  相似文献   

15.
The waste heat of exhaust gases of a bus is utilized as a high temperature source for a hydrogen heat pump. The thermodynamic cycle of the hydrogen heat pump is presented and the critical step of the cycle is analysed. In this part of the cycle the process is heat transfer limited and can be enhanced by using hydride compacts of increased thermal conductivity. Data comparing the performance of powder hydrides with that of compacts are shown.A model of a hydrogen heat pump aimed to serve as an air conditioner for a bus was designed and built in our laboratory. The ultimate cooling capacity of the model and its current running capacity are discussed. The following aspects of the model are presented: the hydrides utilized (porous metal matrix compacts consisting of MmNi4.15Fe0.85Hx (Mm ≡; misch metal) with an 18 wt.% Al matrix and LaNi4.7Al0.3Hx powder); the function of the air conditioner, the physical structure of the model, the heat exchangers and the heat transfer, air flow and control system; the available input power and temperature, the efficiency, the coefficient of performance, the cycle time, the cooling power capacity, losses and weights; a bus air conditioner prototype.  相似文献   

16.
Meek CC  Pantano P 《Lab on a chip》2001,1(2):158-163
Microwell arrays were chemically etched across the distal faces of coherent fiber-optic bundles. A typical 1.6 mm diameter array comprised approximately 3000 individual microwells that were approximately 1-14 microm deep and approximately 22 microm wide. A methodology involving organosilane functionalized microwell surfaces and site-selective photobiotin chemistry was developed to partially fill microwells with a thin avidin layer. Avidin microwell arrays were characterized using charge coupled device optical microscopy and scanning electron microscopy. The avidin microwell arrays had individual well volumes that were six orders of magnitude smaller and up to 30-fold more numerous than commercially available avidin-coated microtiter plates. Preliminary results indicated that individual avidin microwells were ideally suited to house single biological cells. Using standard epifluorescence microscope optics and a mercury-arc lamp, an individual 22 microm wide microwell could be optically addressed and selectively filled with avidin without the use of a photolithographic mask. The ability to control both the size and position of avidin domains on the microwell array surface demonstrates the utility of this methodology towards fabricating a single microwell array with multianalyte sensing capabilities.  相似文献   

17.
Qiu X  Mauk MG  Chen D  Liu C  Bau HH 《Lab on a chip》2010,10(22):3170-3177
A point-of-care, diagnostic system incorporating a portable thermal cycler and a compact fluorescent detector for real-time, polymerase chain reaction (PCR) on disposable, plastic microfluidic reactors with relatively large reaction volume (ranging from 10 μL to 100 μL) is described. To maintain temperature uniformity and a relatively fast temperature ramping rate, the system utilizes double-sided heater that features a master, thermoelectric element and a thermal waveguide connected to a second thermoelectric element. The waveguide has an aperture for optical coupling between a miniature, fluorescent reader and the PCR reaction chamber. The temperature control is accomplished with a modified, feedforward, variable structural proportional-integral-derivative controller. The temperature of the liquid in the reaction chamber tracks the set-point temperature with an accuracy of ± 0.1 °C. The transition times from one temperature to another are minimized with controllable overshoots (< 2 °C) and undershoots (< 5 °C). The disposable, single-use PCR chip can be quickly inserted into a thermal cycler/reader unit for point-of-care diagnostics applications. The large reaction chamber allows convenient pre-storing of dried, paraffin-encapsulated PCR reagents (polymerase, primers, dNTPs, dyes, and buffers) in the PCR chamber. The reagents are reconstituted "just in time" by heating during the PCR process. The system was tested with viral and bacterial nucleic acid targets.  相似文献   

18.
Genotyping from saliva with a one-step microdevice   总被引:1,自引:0,他引:1  
Pjescic I  Crews N 《Lab on a chip》2012,12(14):2514-2519
This paper presents a disposable microfluidic device for on-chip lysing, PCR, and analysis in one continuous-flow process. Male-female sex determination was performed with human saliva in less than 20 min from spit to finish, and requiring only seconds of manual sample handling. This genetic analysis was based on the amplification and detection of the DYZ1 repeat region unique to the Y-chromosome. The flow-through microfluidic chip consisted of a single serpentine channel designed to guide samples through 42 heating and cooling cycles. Cycling was performed by matching the local channel geometry to a steady-state temperature gradient established across the microfluidic chip. 38 channel segments were designed for rapid low volume PCR, and four were optimized for spatial DNA melting analysis. Fluorescence detection was used to monitor the amplification and to capture the melting signature of the amplicon was performed with a basic 8-bit CCD camera. The microfluidic device itself was fabricated from microscope slides and a double-sided tape. The simplicity of the system and its robust performance combine in an elegant solution for lab-on-a-chip genetic analysis.  相似文献   

19.
We present a novel, on-chip system for the electrokinetic capture of bacterial cells and their identification using the polymerase chain reaction (PCR). The system comprises a glass-silicon platform with a set of micro-channels, -chambers, and -electrodes. A platinum thin film resistor, placed in the proximity of the chambers, is used for temperature monitoring. The whole chip assembly is mounted on a Printed Circuit Board (PCB) and wire-bonded to it. The PCB has an embedded heater that is utilized for PCR thermal cycle and is controlled by a Lab-View program. Similar to our previous work, one set of electrodes on the chip inside the bigger chamber (0.6 microl volume) is used for diverting bacterial cells from a flowing stream into to a smaller chamber (0.4 nl volume). A second set of interdigitated electrodes (in smaller chamber) is used to actively trap and concentrate the bacterial cells using dielectrophoresis (DEP). In the presence of the DEP force, with the cells still entrapped in the micro-chamber, PCR mix is injected into the chamber. Subsequently, PCR amplification with SYBR Green detection is used for genetic identification of Listeria monocytogenes V7 cells. The increase in fluorescence is recorded with a photomultiplier tube module mounted over an epifluorescence microscope. This integrated micro-system is capable of genetic amplification and identification of as few as 60 cells of L. monocytogenes V7 in less than 90 min, in 600 nl volume collected from a sample of 10(4) cfu ml(-1). Specificity trials using various concentrations of L. monocytogenes V7, Listeria innocua F4248, and Escherichia coli O157:H7 were carried out successfully using two different primer sets specific for a regulatory gene of L. monocytogenes, prfA and 16S rRNA primer specific for the Listeria spp., and no cross-reactivity was observed.  相似文献   

20.
Here, a quantitative electrochemical analysis of periodontal bacteria in gingival crevicular fluid (GCF) and saliva by direct polymerase chain reaction (PCR) is presented. The electrochemical measurement was performed by mixing with PCR products and electrochemical indicator (bisbenzimidazole trihydrochloride). The peak current of indicator is reduced due to slower diffusion when the dye intercalates into the amplified DNA, and the degree of reduction in the peak current is correlates with the quantity of amplified DNA. Therefore, a quantitative analysis is possible by using our electrochemical method at the end point of PCR. In the GCF testing, The number of Porphyromonas gingivalis (Pg) detected by our electrochemical method at the end point of PCR were almost same compared with that were calculated by the conventional method of quantitative real? time PCR. In the saliva testing, the relationship between number of Pg in saliva and average pocket depth, and age‐dependence were also clearly observed. Since the saliva sample is obtained in a non‐invasive manner, this method is useful for the primary screening of periodontal disease. Moreover, our detection method is simple and uses a hand‐held potentiostat making it suitable for development of an on‐site periodontal diagnosis system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号