首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
通过捕获探针与纳米金膜之间的共价连接, 保证了滚环扩增(RCA)产物始终结合于金膜表面, Phi29 DNA聚合酶的高效扩增和Escherichia coli DNA链接酶的高度精确性使检测达到单碱基识别, 检测灵敏度达到104 copies/mL. 实验结果表明, 与单碱基错配序列相比, RCA可明显增强检测的灵敏度. 该RCA基因传感器操作简单, 灵敏度和特异性较高, 在乙型肝炎病毒的快速检测方面具有一定的开发潜力.  相似文献   

2.
A quartz crystal microbalance DNA biosensor based on plasma prepared polythiophene /titanium dioxide (PT/TiO2) nanocomposite was developed for the detection of genetically modified organisms (GMOs). DNA hybridization was studied by quartz crystal microbalance (QCM) and cyclic voltammetry (CV) measurements. Single stranded DNA probes were immobilized on the PT/TiO2 coated quartz crystal electrode and the hybridization between the immobilized probe and the target complementary sequence in solution was monitored. The developed QCM-DNA biosensor represented promising results for a real-time, label-free, direct detection of DNA samples for the screening of genetically modified organisms.  相似文献   

3.
A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL−1 from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.  相似文献   

4.
We have characterized the immobilization of thiol-modified oligomers on Au surfaces and subsequent hybridization with a perfectly matched or single-base mismatched target using a quartz crystal microbalance (QCM) and fluorescence spectroscopy. The surface density of immobilized probe molecules and the hybridization efficiency depending on the type of buffer and salt concentration were investigated. We observed some ambiguities in surface coverage deduced from QCM measurement and adopted a complementary fluorescence displacement method. Direct comparison of surface coverage deduced from frequency change in QCM measurement and determined by the fluorescence exchange reaction revealed that QCM results are highly overestimated and the amount of overestimation strongly depends on the type of buffer and the structure of the film. Discrimination capability of the surface attached 15-mer probe was also examined using a single-base mismatched target at various hybridization temperatures. Hybridization efficiency depending on the type of single base mismatch was investigated using surface plasmon resonance (SPR).  相似文献   

5.
Huang GS  Wang MT  Hong MY 《The Analyst》2006,131(3):382-387
A 3 x 3 quartz crystal microbalance (QCM) sensor matrix, fabricated on an A-T cut quartz crystal, has the ability to detect online a variety of labeled DNA samples in a parallel and comparative fashion. The QCM matrix was equipped with a single oscillator circuit, which activated only one QCM at any given time, and was controlled by programmable time-shared electronic relays. The gold electrode had a diameter of 0.8 mm and operated at a fundamental resonating frequency of 40 MHz; the dimensions of the matrix were 1.2 cm x 1.2 cm. The sensitivity of an individual QCM was in the pictogram regime. Selected QCMs were coated with either streptavidin or the anti-DIG antibody; the specificity of their detections was monitored using various concentrations of samples of biotin- and DIG-labeled DNA. The basic design of the QCM matrix is readily expandable, without any conceivable difficulties, in both geometry and circuitry.  相似文献   

6.
7.
The electrochemical behaviour of self-assembled monolayer (SAM) of aliphatic hexadecanethiol was studied by cyclic voltammetry (CV), elimination voltammetry with linear scan (EVLS) and crystal quartz microbalance (QCM). SAMs were electrochemically created on gold-coated QCM crystal through the sulphur in 1-hexadecanethiol molecule head group. The effect of thiol concentration and potential scan rate on the SAM formation was studied. Formation of SAM was confirmed by CV and QCM. EVLS results revealed the kinetically controlled process followed with electrode reaction in adsorbed state characteristic for SAM formation at lower concentration. The electrode reaction of a totally adsorbed electroactive species was indicated by means of a peak-counter peak signal at higher thiol concentration.  相似文献   

8.
Polymer coated quartz crystal microbalance (QCM) sensor based on the frequency shifts due to the adsorption of compounds at the surface of modified quartz crystal electrode is an effective method for detection of sarin (GB) which is a highly toxic nerve warfare agent. A new fluorosiloxane polymer has been synthesized through 6 steps from trifluoromethyl benzene. The synthesis was achieved from trifluoromethyl benzene through nitration, hydrogenation. The obtained m-nitrotrifluoromethyl aniline was treated with NANO2, and then hydrolyzed to m-nitrotrifluoromethyl phenol, m-nitrotrifluoromethyl phenol was reacted with allyl bromide to the ether product. The product was rearranged by Claisen rearrangement, and then reacted with polymethylhydrosiloxane under catalyst of Pt/DVTMS. The fluorosiloxane polymer can be obtained. The polymer has been successfully used as QCM coating material  相似文献   

9.
Ferrocenylnaphthalene diimide 1 can bind to double stranded DNA (dsDNA) by the threading intercalation mode and the resulting complex was stabilized further by beta- cyclodextrin (CD) by forming a supramolecular complex. These complex formation processes were studied by spectroscopic, viscometric, and electrochemical means in the absence or presence of beta-CD. Quantitative analysis by quartz crystal microbalance (QCM) and electrochemical experiments strongly suggested a 2:1 binding stoichiometry for beta-CD to 1 threading-intercalated to the dsDNA-immobilized electrode. Owing to this supramolecular complex formation, electrochemical DNA detection based on 1 was improved considerably.  相似文献   

10.
Bunde RL  Jarvi EJ  Rosentreter JJ 《Talanta》2000,51(1):159-171
To date, no experimental technique has been used to monitor DNA-protein crosslink formation in real-time. Real-time data is important for understanding the underlying chemical mechanisms associated with this reaction process. Here, the novel adaptation of existing piezoelectric quartz crystal (PQC) or quartz crystal microbalance (QCM) technology was used to monitor, in real-time, the formation of a crosslink bond induced by formaldehyde between lysine and guanine. Previous results showed complexes of lysine and guanine constitute a major portion of the DNA-protein crosslinks formed. Thus, poly-lysine(5) and poly-deoxyguanosine(11) were used as a model system to develop this detection method. Poly-lysine(5) was immobilized on QCM electrode surfaces by covalent attachment through polyethylenimine (PEI). Immobilization was confirmed by the decrease in dry QCM frequency; data consistency suggested uniform coatings were produced. The QCM sensor was configured within a thermostatic environmental chamber. The system was calibrated and baseline responses to variations in the analyte solution matrix were identified. QCMs with immobilized poly-lysine(5) were placed in contact with formaldehyde and poly-deoxyguanosine(11), and crosslink formation was monitored in real-time. Crosslink formation was verified through evaluation of controls. Control assays indicated some of the frequency signal was as aresult of non-specific association. Further assays were conducted after saturation of non-specific binding. This real-time data represents a significant advancement in the state of knowledge of the crosslinking process and provides the experimental foundation for further QCM crosslink investigations.  相似文献   

11.
应用自组装膜技术在压电石英晶振金电极表面自组装一带羧基的巯基丙酸单层膜,通过盐酸1-乙基-3-(3-二甲基氨基丙基)碳二亚胺及N-羟基琥珀酰亚胺共价固定32KD的日本血吸虫分子抗原(SjAg32),设计了石英晶振微天平免疫传感器,用于测定日本血吸虫抗体.比较了巯基自组装单层膜与HEMA-MMA共聚物涂层修饰的石英晶振在溶液中的振荡行为,发现巯基自组装单层膜修饰的石英晶振稳定快,且稳定性好.在优化条件下,测得IRS(49-2000)的滴度为1:1500.此外,对不同程度血吸虫感染的兔血清进行了测试,结果表明,该传感器能较好地定量区别血吸虫感染程度.  相似文献   

12.
The chemical oxidation of aniline with ammonium persulphate (APS) in aqueous acidic medium to form polyaniline (PANI) films has been studied using the quartz crystal microbalance (QCM) technique. PANI films can also grow onto glass supports immersed in the reaction mixture during the polymerization. The optical absorption for these films was measured. Multilayer deposition of polymer films onto the gold electrode of QCM and onto the glass supports from consecutive repetitive treatments by the reaction mixture containing aniline and APS, were studied. The induction period, the yield and the growth rate of the polymer films during the multilayer deposition were discussed. A relation between the thickness of the films determined, from QCM technique and the optical absorption of the films was established. The electrical conductivity of the PANI films was also measured.  相似文献   

13.
Gao N  Dong J  Liu M  Ning B  Cheng C  Guo C  Zhou C  Peng Y  Bai J  Gao Z 《The Analyst》2012,137(5):1252-1258
A quartz crystal microbalance (QCM) sensor based on molecularly imprinted ultra-thin films was developed for detecting profenofos in real samples. Films prepared by physical entrapment (MIP-A) and in situ self-assembly (MIP-B) were compared. The results indicated that the best sensing signal was obtained through the in situ self-assembly method. The QCM sensor chip was pretreated with 11-mercaptoundecanoic acid (MUA) to form a self-assembled monolayer (SAM), and then polymer films were immobilized directly on the SAM using surface-initiated radical polymerization. In this paper, all detection experiments were taken in air. The reaction was processed in solution, and the electrode was washed with deionized water and dried with N(2) before QCM measurement. The film was characterized by a scanning electron microscope (SEM), AC impedance and cyclic voltammetry. Analysis of the QCM response in the presence of different concentrations of profenofos showed a good linear correlation during 1.0 × 10(-8) to 1.0 × 10(-5) mg mL(-1) (y = 5log x + 42.5, R = 0.9960) and 1.0 × 10(-5) to 1.0 × 10(-3) mg mL(-1) (y = 25.86log x + 146, R = 0.9959), respectively. The MIP-QCM sensor was used to detect profenofos in tap water, and showed good recovery and repeatability.  相似文献   

14.
ABSTRACT

In this study, a quartz crystal microbalance (QCM) nanosensor was prepared to detect tryptophan. QCM nanosensor was prepared through the formation of tryptophan memories on the gold surface of QCM electrode using Methacryloylamidohistidine-Cu(II)-tryptophan ([MAH-Cu(II)]-tryptophan) pre-organised monomer system. The designed pre-organised monomer system was characterised by use of Fourier Transform Infrared (FTIR) and Atomic Force Microscope (AFM) was used to characterise the QCM nanosensors. After the characterisation studies, imprinted and non-imprinted sensors were connected to QCM system to determine the binding of the target molecule, selectivity and the detection of the amount of target molecule in real samples. The results showed that the imprinted QCM nanosensor had high selectivity for tryptophan.  相似文献   

15.
《Analytical letters》2012,45(14):2697-2709
Abstract

A novel piezoelectric quartz crystal microbalance (QCM) device with gas permeable membrane is proposed for the detection of microorganisms producing hydrogen sulfide (H2S). The detection theory is based on the adsorption of hydrogen sulfide onto the silver electrode of the piezoelectric crystal sensor, which causes a dramatic decrease in the resonant frequency of QCM. A 100 Hz frequency shift is chosen as the criteria value to judge the presence of microorganisms producing H2S. Factors affecting detection were investigated. Desiccant is of great practical importance in sensor response. This new biosensor can be a potential candidate for detecting bacteria which produce hydrogen sulfide.  相似文献   

16.
A quartz crystal microbalance (QCM) sensor was developed for the quantitation of calcium phosphate mineralization and the assessment of DNA as a template molecule. Inherent advantages of QCM, such as nanogram sensitivity, temporal resolution, surface-based measurements, and flow capabilities, were leveraged in the design of this sensor, and in-line fluidic mixing was used to control precursor reaction. This research shows that DNA, a highly programmable anionic polymer, is able to template and control mineralization of calcium phosphate, with nucleation occurring in less than 15 min and initial rates ranging from 4 to 8 ng/min. FT-IR measurements show mineralized material to be calcium phosphate resembling hydroxyapatite (HAP) when a DNA template is used. DNA is a promising mineralization template, and the QCM proves to be a dynamic technique for a broad range of heterogeneous mineralization experiments in complement to classic, diffusion-limited, end-point analysis techniques.  相似文献   

17.
Herein we report a polymerase chain reaction (PCR)-free electrochemiluminescence (ECL) approach that uses ECL nanoprobes for the determination of cancer cells with high sensitivity. The ECL nanoprobe consists of gold nanoparticles (AuNPs), linker DNA, and tris(2,2'-bipyridyl)ruthenium (TBR)-labeled signal DNA. The linker DNA and signal DNA were modified on the surface of the AuNPs through Au-S bonds. The linker DNA can partly hybridize with the aptamers of cancer cells loaded onto the magnetic beads (MB1) to construct the magnetic biocomplexes. In the presence of the cancer cells, the aptamers conjugated with the cancer cells with higher affinity. The ECL nanoprobe was released from the biocomplexes and subsequently hybridized with the capture DNA loaded onto another magnetic bead (MB2) to form the magnetic nanocomposite. The nanocomposites can be easily separated and firmly attached to an electrode on account of their excellent magnetic properties. The ECL intensity of the TBR loaded onto the nanocomposites directly reflected the amount of cancer cells. By using cell lines of Burkitt's lymphoma (Ramos cells) as a model, the ECL response was proportional to the cell concentration in the range from 5 to 100 cells ml(-1); a limit of detection as low as 5 cells ml(-1) of Ramos cells could be achieved. The proposed method described here is ideal for the diagnosis of cancers due to its high sensitivity, simplicity, and low cost.  相似文献   

18.
Lassalle N  Roget A  Livache T  Mailley P  Vieil E 《Talanta》2001,55(5):993-1004
Conducting polymer films, such as polypyrrole, appear particularly attractive for the immobilisation of biological molecules by entrapment or covalent grafting. We describe here a new pyrrole phosphorarnidite building block allowing the synthesis of oligonucleotide (ODN) bearing a pyrrole moiety. The electropolymerisable pyrrole moiety was then introduced on the 5' end of the oligonucleotide. The electrosynthesis of a copolymer, from solutions containing pyrrole and pyrrole-ODN, gives in one step strongly adhesive films containing ODN probes at electrode surfaces. In this contribution, we have used such a methodology to verify its feasibility for the modification of quartz crystal microbalance (QCM) electrodes. The obtained biosensors enable the detection of DNA hybridisation in real time by micro-gravimetric transduction. Finally, as DNA targets were previously modified by biotin, we have used the affinity between biotin and avidin to validate the effectiveness of QCM transduction by fluorescence microscopy and to amplify the recorded micro-gravimetric signal.  相似文献   

19.
石英晶体微天平技术在苯胺乳液聚合动力学研究中的应用   总被引:1,自引:1,他引:0  
采用石英晶体微天平(QCM)技术, 探讨了在有无磁场条件下, 用过硫酸铵(APS)作为引发剂时苯胺的乳液聚合动力学行为. 研究结果表明, 苯胺的乳液聚合反应速率对苯胺(An)是一级反应; 对APS和十二烷基苯磺酸(DBSA)均为0.5级反应. 磁场环境中苯胺的聚合速率比在无磁环境中的要快. 在有无磁场条件下, 反应的表观活化能分别为40.4和41.6 kJ/mol. 结果表明, QCM技术可以作为研究An聚合动力学的一种有效方法.  相似文献   

20.
A novel, highly sensitive technology for the detection, enrichment, and separation of trace amounts of target DNA was developed on the basis of amino-modified fluorescent magnetic composite nanoparticles (AFMN). In this study, the positively charged amino-modified composite nanoparticles conjugate with the negatively charged capture DNA through electrostatic binding. The optimal combination of AFMN and capture DNA was measured by dynamic light scattering (DLS) and UV–vis absorption spectroscopy. The highly sensitive detection of trace amounts of target DNA was achieved through enrichment by means of AFMN. The detection limit for target DNA is 0.4 pM, which could be further improved by using a more powerful magnet. Because of their different melting temperatures, single-base mismatched target DNA could be separated from perfectly complementary target DNA. In addition, the photoluminescence (PL) signals of perfectly complementary target DNA and single-base mismatched DNA as well as the hybridization kinetics of different concentrations of target DNA at different reaction times have also been studied. Most importantly, the detection, enrichment, and separation ability of AFMN was further verified with milk. Simple and satisfactory results were obtained, which show the great potential in the fields of mutation identification and clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号