首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the electronic structure of both armchair and zigzag α-graphyne nanoribbons. We use a simple tight binding model to study the variation of the electronic band gap in α-graphyne nanoribbon. The effects of ribbon width, transverse electric field and edge shape on the electronic structure have been studied. Our results show that in the absence of external electric field, zigzag α-graphyne nanoribbons are semimetal and the electronic band gap in armchair α-graphyne nanoribbon oscillates and decreases with ribbon's width. By applying an external electric field the band gap in the electronic structure of zigzag α-graphyne nanoribbon opens and oscillates with ribbon width and electric field magnitude. Also the band gap of armchair α-graphyne nanoribbon decreases in low electric field, but it has an oscillatory growth behavior for high strength of external electric field.  相似文献   

2.
Systematic first principle calculations have been used to explain the dangling bonds behaviour in the rolling up of a boron nitride nanoribbon (BNNR) to construct a single-walled boron nitride nanotube (BNNT). We found in armchair BNNR two degenerate dangling bonds split and move up to higher energies due to symmetry breaking of system. While in zigzag BNNR changing the topology of system does not affect on metallic features of the band structure, but in unzipped BNNT case a metallic-semimetallic phase transition occurs. Considering the width dependent electronic properties of hydrogen passivated armchair BNNRs, exhibit zigzag behaviour of energy gap in agreement with previous results.  相似文献   

3.
The electronic spectra for double-wall zigzag and armchair nanotubes are found. The influence of nanotube curvatures on the electronic spectra is also calculated. Our finding that the outer shell is hole doped by the inner shell is in the difference between Fermi levels of individual shells which originate from the different hybridization of π orbital. The shift and rotation of the inner nanotube with respect to the outer nanotube are investigated. We found stable semimetal characteristics of the armchair DWNTs in regard of the shift and rotation of the inner nanotube. We predict the shift of kF towards the bigger wave vectors with decreasing of the radius of the armchair nanotube.  相似文献   

4.
Based on the nearest-neighbor tight-binding approximation, we present exact analytical expressions for electron transmission in nanotube/ribbon junctions, generated by incomplete unzipping of zigzag nanotubes. By assuming one-dimer-line difference in the widths of the leads, it is demonstrated that such a contact exhibits zero backscattering of low-energy electrons entering from the graphene side of the junction. We also show that a zigzag nanotube section sandwiched between two armchair graphene ribbons is completely transparent for incident low-energy electrons. Possible application of the results to nanosensor engineering is also included.  相似文献   

5.
The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond.  相似文献   

6.
曾永昌  田文  张振华 《物理学报》2013,62(23):236102-236102
利用基于密度泛函理论的第一性原理方法,研究了内边缘氧饱和的周期性凿洞石墨烯纳米带(G NR)的电子特性. 研究结果表明:对于凿洞锯齿形石墨烯纳米带(ZGNRs),在非磁性态时不仅始终为金属,且金属性明显增强;反铁磁态(AFM)时为半导体的ZGNR,凿洞后可能成为金属;但铁磁态(FM)为金属的ZGNR,凿洞后一般变为半导体或半金属. 而对于凿洞的扶手椅形石墨烯(AGNRs),其带隙会明显增加. 深入分析发现:这是由于氧原子对石墨烯纳米带边的电子特性有重要的影响,以及颈次级纳米带(NSNR)及边缘次级纳米带(ESNR)的不同宽度及边缘形状(锯齿或扶手椅形)能呈现出不同的量子限域效应. 这些研究对于发展纳米电子器件有重要的意义. 关键词: 石墨烯纳米带 纳米洞 内边缘氧饱和 电子特性  相似文献   

7.
Using the fully self-consistent non-equilibrium Green?s function (NEGF) method combined with density functional theory, we investigate numerically the electronic transport property for pristine and doped crossed graphene nanoribbon (GNR) junctions. It is demonstrated that in the case of zigzag interfaces, the IV characteristics of the junction with or without doping always show semiconducting behavior, which is different from that in the case of armchair interfaces [Zhou, Liao, Zhou, Chen, Zhou, Eur. Phys. J. B 76 (2010) 421]. Interestingly, negative differential resistance (NDR) behavior can be clearly observed in a certain bias region for nitrogen-doped shoulder crossed junction. A mechanism for the NDR behavior is suggested.  相似文献   

8.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

9.
The electronic structures of carbon nanotubes doped with oxygen dimers are studied using the ab initio pseudopotential density functional method. The fundamental energy gap of zigzag semiconducting nanotubes exhibits a strong dependence on both the concentration and configuration of oxygen-dimer defects that substitute for carbon atoms in the tubes and on the tube chiral index. For a certain type of zigzag nanotube when doped with oxygen dimers, the energy gap is closed and the tube becomes semimetallic. At higher oxygen-dimer concentrations the gap reopens, and the tube exhibits semiconducting behavior again. The change of the band gap of the zigzag tube is understood in terms of their response to the strains caused by the dimer substitutional doping.  相似文献   

10.
The electronic transport properties of a graphene nanoribbon (GNR) are known to be sensitive to its width, edges and defects. We investigate the electronic transport properties of a graphene nanoribbon heterojunction constructed by fusing a zigzag and an armchair graphene nanoribbon (zGNR/aGNR) side by side. First principles results reveal that the heterojunction can be either metallic or semiconducting, depending on the width of the nanoribbons. Intrinsic rectification behaviors have been observed, which are largely sensitive to the connection length between the zGNR and aGNR. The microscopic origins of the rectification behavior have been revealed. We find that the carrier type can alter from electrons to holes with the bias voltage changing from negative to positive; the asymmetrical transmission spectra of electrons and holes induced by the interface defects directly results in the rectification behavior. The results suggest that any methods which can enhance the asymmetry of the transmission spectra between holes and electrons could be used to improve the rectification behavior in the zGNR/aGNR heterojunction. Our findings could be useful for designing graphene based electronic devices.  相似文献   

11.
袁健美  毛宇亮 《物理学报》2011,60(10):103103-103103
基于密度泛函理论的第一性原理计算方法,研究了宽度N=8的边缘氢化和非氢化条带的结构和电子性质. 研究表明,扶手形无氢化石墨纳米条带的边缘碳原子是以三重键相互结合,它在边缘的成键强度比氢化时要高,具有更强的化学活性,可作为纳米化学传感器的基础材料. 能带结构计算表明,无论是扶手形条带还是锯齿形条带,它们都是具有带隙的半导体,且无氢化条带的带隙要比氢化的条带带隙宽度大,氢化对于条带的电子性质具有显著修饰作用. 通过锯齿形石墨纳米条带顺磁性、铁磁性和反铁磁性的计算,发现反铁磁的状态最稳定,并且边缘磁性最强,这有利于条带在自旋电子器件中的应用. 关键词: 石墨纳米条带 成键机理 电子结构 自旋分布  相似文献   

12.
采用基于密度泛函理论的第一性原理计算,对扶手椅型(4,4)和(6,6)及锯齿型(8,0)和(10,0)C/SiC纳米管异质结的电子结构进行了研究.结果表明两类异质结结构都表现为半导体特性.扶手椅型纳米管异质结形成了Ⅰ型异质结,电子和空穴都限制在碳纳米管部分.锯齿型纳米管异质结中价带顶主要分布在碳纳米管部分及C/SiC界面处,而导带底均匀分布在整个纳米管异质结上.这两种异质结结构在未来纳米器件中具有潜在的应用价值. 关键词: C/SiC纳米管异质结 第一性原理 电子结构  相似文献   

13.
The structural and electronic properties of semiconductors (Si and Ge) and metal (Au and Tl) atoms doped armchair (n, n) and zigzag (n, 0); n=4–6, single wall carbon nanotubes (SWCNTs) have been studied using an ab-initio method. We have considered a linear chain of dopant atoms inside CNTs of different diameters but of same length. We have studied variation of B.E./atom, ionization potential, electron affinity and HOMO–LUMO gap of doped armchair and zigzag CNTs with diameter and dopant type. For armchair undoped CNTs, the B.E./atom increases with the increase in diameter of the tubes. For Si, Ge and Tl doped CNTs, B.E./atom is maximum for (6, 6) CNT whereas for Au doped CNTs, it is maximum for (5, 5) CNTs. For pure CNTs, IP decreases slightly with increasing diameter whereas EA increases with diameter. The study of HOMO–LUMO gap shows that on doping metallic character of the armchair CNTs increases whereas for zigzag CNTs semiconducting character increases. In case of zigzag tubes only Si doped (5, 0), (6, 0) and Ge doped (6, 0) CNTs are stable. The IP and EA for doped zigzag CNTs remain almost independent of tube diameter and dopant type whereas for doped armchair CNTs, maximum IP and EA are observed for (5, 5) tube for all dopants.  相似文献   

14.
采用基于密度泛函理论的第一性原理计算研究了电场对BN纳米管的电子结构的影响.首先对在不同电场强度下的纳米管几何结构进行了优化,可以看出纳米管沿轴方向层间距出现了不规则的变化.电子能带结构显示,在电场作用下,zigzag型和armchair型两种结构纳米管的能带向低能方向移动,并且导致纳米管的带隙有显著的减小.电场使得armchair型纳米管的带隙发生了从间接带隙向直接带隙的转变.在电场作用下,纳米管的两端态密度呈现出明显的差异,正负电荷沿轴向出现了沿轴向的空间分离,Mulliken电荷分布图揭示出最高占据轨道和最低未占据轨道分居在纳米管的两端.  相似文献   

15.
单壁碳纳米管轴向压缩变形的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
王宇  王秀喜  倪向贵  吴恒安 《物理学报》2003,52(12):3120-3124
采用Tersoff-Brenner势函数描述碳纳米管中碳原子间的相互作用,通过分子动力学方法对不同螺旋型的单壁碳纳米管的轴向压缩变形行为进行了研究.研究发现单臂碳纳米管的杨氏模量低于锯齿形碳纳米管,根据微观结构特征的差异对这一结果进行了分析.同时从能量和结构变化两方面对碳纳米管受压失稳进行了分析,揭示出碳纳米管失稳的微观特征. 关键词: 纳米管 分子动力学 杨氏模量 屈曲  相似文献   

16.
First-principles calculations are performed for electron transmission through a metallic zigzag carbon nanotube with substitutional BN dimers parallel to the nanotube axis. The transmission coefficient is calculated in the energy range (around the charge neutrality point) in which there exist two degenerate subbands for each spin. Wave functions in the circumferential direction of one of the degenerate subbands can be chosen so as to have nodes at the position of a carbon dimer parallel to the nanotube axis. It is shown that the transmission probability of an incident wave with such wave-function nodes depends crucially on positions of BN dimers relative to the nodes. By placing each of dimers at one of the nodes, the transmission probability is substantially enhanced and is well described by the Born approximation in spite of spatially extended scattering potential due to ionized B and N. This suggests that the arrangement in the circumferential direction of various impurities influences transport through metallic zigzag carbon nanotubes.  相似文献   

17.
朱亚波  鲍振  蔡存金  杨玉杰 《物理学报》2009,58(11):7833-7837
运用分子动力学方法具体模拟研究单个碳纳米管(CNTs)在加热过程中的结构变化.选择多组不同结构的单壁碳纳米管(SWCNTs)和双壁碳纳米管(DWCNTs)作为研究对象,加热温度从室温开始到4000 K,压强保持为1 atm.结果表明单壁碳管中手性型结构热稳定性最好,其次是扶手椅型和锯齿型,当手性角相同时,直径大的热稳定性更高;对于双壁碳管,研究表明当双壁中至少之一为手性结构时其热稳定好,而内外壁均为锯齿结构的稳定性最差,该结果进一步支持了有关单壁碳管的结论;还从理论上探索了描述结构热稳定性的方式,并在键层 关键词: 单壁碳纳米管 双壁碳纳米管 分子动力学方法 热稳定性能  相似文献   

18.
By capturing the atomic information and reflecting the behaviour governed by a nonlinear potential function, an analytical molecular mechanics approach is applied to establish the constitutive relation for single-walled carbon nanotubes (SWCNTs). The nonlinear tensile deformation curves of zigzag and armchair nanotubes with different radii are predicted, and the elastic properties of these SWCNTs are obtained. A conclusion is made that the nanotube radius has little effect on the mechanical behaviour of SWCNTs subject to simple tension, while the nanotube orientation has larger influence.  相似文献   

19.
An ideal single vacancy can be formed by removing one carbon atom from a hexagonal network. The vacancy is one of the most important defect structures in carbon nanotubes (CNTs). Vacancies can affect the mechanical, chemical, and electronic properties of CNTs. We have systematically investigated single vacancies and their related point defects for achiral, single-walled carbon nanotubes (SWNTs) using first-principles calculations. The structures around single vacancies undergo reconstruction without constraint, forming ground-stateor metastable-state structures. The 5-1DB and 3DB point defects can be formed in armchair CNTS, while the 5-1DB-P and 5-1DB-T point defects can be formed in zigzag CNTs. The related point defects can transform into each other under certain conditions. The formation energies of armchair CNTs change smoothly with the tube radius, while in the case of the 3DB defect, as the radius get larger, the formation energies tend towards a constant value.  相似文献   

20.
陈风  陈元平  张迷  钟建新 《中国物理 B》2010,19(8):86105-086105
The transport properties of hexagonal boron--nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron--nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron--nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron--nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号