首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnetic correlation between magnetic impurities in semiconductors is investigated by performing the quantum Monte Carlo (QMC) simulation. The Anderson Hamiltonian with the realistic parameters obtained by the local density approximation (LDA) calculation is employed. The LDA calculation gives a dispersion of the host (GaAs) electron and the mixing energy between host and magnetic impurity (Mn). The mixing between host and impurity electrons generates the impurity bound state in the energy gap of semiconductors. The long range ferromagnetic coupling is observed when the Fermi energy locates between the band edge and the impurity bound state. The ferromagnetic coupling is enhanced by decreasing temperature.  相似文献   

2.
We study magnetic impurities in a two dimensional superfluid Fermi gas with thespin-orbit coupling and find that the spin-orbit coupling makes some dramatic impacts onthe effects of magnetic impurities. For the single impurity problem, we find that thenumber of bound states localized around the magnetic impurity is doubled. For the finiteconcentration n of impurities, we find that the energy gap is reduced andthe density of states in the gapless region is greatly modified; there exists a gaplesssuperfluid and N(ω) ∝ ω in the smallω limit.  相似文献   

3.
邓诗贤  梁世东 《中国物理 B》2012,21(4):47306-047306
The conductances of two typical metallic graphene nanoribbons with one and two defects are studied using the tight binding model with the surface Green’s function method. The weak scattering impurities, U ~ 1 eV, induce a dip in the conductance near the Fermi energy for the narrow zigzag graphene nanoribbons. As the impurity scattering strength increases, the conductance behavior at the Fermi energy becomes more complicated and depends on the impurity location, the AA and AB sites. The impurity effect then becomes weak and vanishes with the increase in the width of the zigzag graphene nanoribbons (150 nm). For the narrow armchair graphene nanoribbons, the conductance at the Fermi energy is suppressed by the impurities and becomes zero with the increase in impurity scattering strength, U > 100 eV, for two impurities at the AA sites, but becomes constant for the two impurities at the AB sites. As the width of the graphene nanoribbons increases, the impurity effect on the conductance at the Fermi energy depends sensitively on the vacancy location at the AA or AB sites.  相似文献   

4.
We study the response of classical impurities in quantum Ising chains. The Z2Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.  相似文献   

5.
《Physics letters. A》2020,384(27):126694
We consider the edge of a superconducting topological insulator with the impurity in the presence of the Zeeman field. We analytically prove that in the trivial phase two Andreev bound states (ABSs) arise with energies moving from the superconducting gap edges to zero forming two Majorana-like bound states, as the impurity strength varies from 0 to ±2. When the Zeeman field is locally perturbed, ABSs arise both in the trivial and topological phases, but in the topological phase ABSs with energy near the gap edges cannot transform into Majorana bound states and vice versa.  相似文献   

6.
Valence and core level spectra ofAgMn,AuFe,AuCo,AuNi,CuFe,CuCo andCuNi will be reported. Clearly defined virtual bound states (vbs) can only be detected in the spin fluctuating systemsAuNi andCuNi. An increase in the density of states near the Fermi energy, in the region of the flats-p band of the host metal is observed in the other magnetic alloys. There are indications that a large hybridization between the impurity and the host metald-electrons exist. The impurity core levels show satellites. They can originate from the emission from real isolated impurities and from many body effects.  相似文献   

7.
We study the charge transport of the noninteracting electron gas in a two-dimensional quantum Hall system with Anderson-type impurities at zero temperature. We prove that there exist localized states of the bulk order in the disordered-broadened Landau bands whose energies are smaller than a certain value determined by the strength of the uniform magnetic field. We also prove that, when the Fermi level lies in the localization regime, the Hall conductance is quantized to the desired integer and shows the plateau of the bulk order for varying the filling factor of the electrons rather than the Fermi level.  相似文献   

8.
The evolution of the electronic structure of CeNi4M (M = Fe, Co, Ni, Cu) intermetallics depending on the type of nickel substitutional impurity is explored. We have calculated band structures of these compounds and considered options of substituting one atom in nickel 3d sublattice in both types of crystallographic positions: 2c and 3g. The analysis of total energy self-consistent calculations has shown that positions of 2c type are more energetically advantageous for single iron and cobalt impurities, whereas a position of 3g type is better for a copper impurity. The Cu substitutional impurity does not change either the nonmagnetic state of ions or the total density at the Fermi level states. Fe and Co impurities, on the contrary, due to their considerable magnetic moments, induce magnetization of 3d states of nickel and cause significant changes in the electronic state density at the Fermi level.  相似文献   

9.
We present the first spin-polarized band calculation for hydrogen impurities in ferromagnetic Ni. A set of impurity states is split off from the bottom of the Ni conduction bands. The impurities are effectively screened, and one electron per impurity is filled in states above the pure Ni Fermi energy. The work function is raised by hydrogenation, and the magnetic moment of the Ni atoms surrounding the impurity is reduced. The contact spin density at the impurity compares favourably with μSR data.  相似文献   

10.
M. A. Silaev 《JETP Letters》2009,90(5):391-397
We study subgap spectra of fermions localized within vortex cores in 3He-B. We develop an analytical treatment of the low-energy states and consider the characteristic properties of fermion spectra for different types of vortices. Due to the removed spin degeneracy the spectra of all singly quantized vortices consist of two different anomalous branches crossing the Fermi level. For singular o and u vortices the anomalous branches are similar to the standard Caroli-de Gennes-Matricon ones and intersect the Fermi level at zero angular momentum yet with different slopes corresponding to different spin states. On the contrary the spectral branches of nonsingular vortices intersect the Fermi level at finite angular momenta which leads to the appearance of a large number of zero modes, i.e. energy states at the Fermi level. Considering the ν, w and uvw vortices with superfluid cores we show that the number of zero modes is proportional to the size of the vortex core.  相似文献   

11.
《Physics letters. A》2004,324(4):331-336
Based on one-dimensional quantum waveguide theory we study the symmetry of the spin-polarized transmission through an Aharonov–Bohm ring with a magnetic impurity, in which the spin-exchange interaction between an incident electron and the magnetic impurity leads to spin–flip scattering. It shows that for some special Fermi energies, both spin-up and spin-down transmission coefficients are symmetric under the flux reversal in the spin–flip scattering process and the spin-polarized conductance also is symmetric. In above case, AB oscillations of spin-down transmission and reflection are perfectly identical. The effect of the exchange interaction strength and Fermi wave vector on transmission behavior of spin-state electrons is examined.  相似文献   

12.
By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormalization group flow of the Hall and Thouless conductances, quantum Hall edge states with high Chern number n are completely different from that of the n = 1 case. Two categories of individual edge modes are evaluated in a quantum Hall system with high Chern number. Edge states from the lowest Landau level have similar eigenfunctions that are well localized at the system edge and independent of the Fermi energy. On the other hand, at fixed Fermi energy, the edge state from higher Landau levels exhibit larger expansion, which results in less stable quantum Hall states at high Fermi energies. By presenting the local current density distribution, the effect of disorder on eigenmode-resolved edge states is distinctly demonstrated.  相似文献   

13.
We study Andreev states near atomic scale modulations in the pairing potential in both s- and d-wave superconductors with short coherence lengths. For a moderate reduction of the local gap, the states exist only close to the gap edge. If one allows for local sign changes of the order parameter, however, resonances can occur at energies close to the Fermi level. The local density of states (LDOS) around such pairing potential defects strongly resembles the patterns observed by tunneling measurements around Zn impurities in Bi2Sr2CaCu2O8+x (BSCCO). We discuss how this phase impurity model of the Zn LDOS pattern can be distinguished from other proposals experimentally.  相似文献   

14.
The structure of the bound states in superconductors with magnetic impurities is investigated in detail following earlier work. It is shown that there is exactly one bound state per magnetic impurity with a wave function which decays exponentially on a characteristic scale. However, there is no accumulation of charge around the impurity as the bound state charge distribution is compensated by the contribution from band states apart from Ruderman-Kittel oscillations.  相似文献   

15.
The interaction of bright solitons with impurities in the on-site anisotropy of a ferromagnetic chain is studied. This type of impurities leads to linear and nonlinear perturbing terms in the corresponding nonlinear Schrödinger equation. We have found static soliton-impurity bound states and considered the conditions for their formation. For large values of the anisotropy the character of the impurities is mainly linear. The interaction of propagating solitons with the impurities is also investigated. We have obtained that the solitons can be transmitted, trapped or reflected. The behavior depends on the soliton velocity and width, magnetic parameters and the impurity strength.  相似文献   

16.
We consider a model of an Anderson impurity embedded in a d(x(2)-y(2))--wave superconducting state to describe the low-energy excitations of cuprate superconductors doped with a small amount of magnetic impurities. Because of the Dirac-like energy dispersion, a sharp localized resonance above the Fermi energy, showing a marginal Fermi liquid behavior ( omega ln omega as omega-->0), is predicted for the impurity states. The same logarithmic dependence of self-energy and a linear frequency dependence of the relaxation rate are also derived for the conduction electrons, characterizing a new universality class for the strong coupling fixed point. At the resonant energies, the spatial distribution of the electron density of states around the magnetic impurity is also calculated.  相似文献   

17.
We present an extended study of single impurity atoms and atomic swaps in half-metallic CrAs, CrSb and CrSe zinc-blende compounds. Although the perfect alloys present a rather large gap in the minority-spin band, all defects under study, with the exception of void impurities at Cr and sp sites and Cr impurities at sp sites (as long as no swap occurs), induce new states within the gap. The Fermi level can be pinned within these new minority states depending on the lattice constant used for the calculations and the electronegativity of the sp atoms. Although these impurity states are localized in space around the impurity atoms and very fast we regain the bulk behavior, their interaction can lead to wide bands within the gap and thus loss of the half-metallic character.  相似文献   

18.
Under the conditions corresponding to tunnel-coupled edge current states in an open ring interferometer, oscillations of conductance as a function of gate voltage with two noticeably different periods are observed. The large-period oscillations are attributed to the electron tunneling between the source and drain regions via a closed edge state of the ring, when an integral number of magnetic flux quanta passes through its contour at the Fermi level. The small-period oscillations are explained by the effect of single-electron variations of the ring potential on the transparency of the barriers between the localized and delocalized edge states of the interfer-ometer.  相似文献   

19.
The experimental data related to the electric field gradient at transition impurities either in hexagonal metals, or in cubic metals where the isotropy is perturbed by a next impurity, can be explained neither by the lattice contribution nor by the electronic contribution from the conduction band. A model is proposed here to investigate the electronic contribution arising from virtual bound 3d states on the impurity, by studying the local crystal field influence in a Friedel-Anderson model. It appears that at the 0°K limit, the localized electronic contribution to the EFG can be linearly related to the density nd(?F) of 3d states at the Fermi level. As a first approximation, this law is valid even at temperature different from 0°K so establishing a linear correlation between the EFG, the impurity resistivity and the amplitude of the charge perturbation around the impurity.  相似文献   

20.
Based on the Anderson impurity model and self-consistent approach, we investigate the condition for the screening of a local magnetic moment by electrons in graphene and the influence of the moment on electronic properties of the system. The results of numerical calculations carried out on a finite sheet of graphene show that when the Fermi energy is above the single occupancy energy and below the double occupancy energy of the local impurity, a magnetic state is possible. A phase diagram in a parameter space spanned by the Coulomb energy U and the Fermi energy is obtained to distinguish the parameter regions for the magnetic and nonmagnetic states of the impurity. We find that the combined effect of the impurity and finite size effect results in a large charge density near the edges of the finite graphene sheet. The density of states exhibits a peak at the Dirac point which is caused by the appearance of the edge states localized at the zigzag edges of the sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号