首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetocaloric effect (MCE) and the magnetostriction in the Ni49.3Mn40.4In10.3 Heusler alloy have been measured in ac magnetic fields to 8 T. It is shown that the contributions of the magnetic and structural subsystems to MCE have opposite signs; in this case, the contribution of the magnetic subsystem is dominant. The anomalous temperature dependence of the magnetostriction during the magnetostructural phase transition (PT) is explained by competition of the processes of growing austenite phase nuclei and the striction processes in them.  相似文献   

2.
李哲  敬超  张浩雷  曹世勋  张金仓 《中国物理 B》2011,20(4):47502-047502
This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloy. Through heat capacity measurements,it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases,as well as thermal hysteresis during martensitic transition. However,careful study indicates that the spurious results during martensitic transition can be removed using a Clausius-Clapeyron equation based on magnetization measurements.  相似文献   

3.
Results from studies of the crystal structure, resistivity, susceptibility, and magnetization of nonstoichiometric Ni50Mn50 − x In x Heusler alloys are presented. Anomalous effects discovered in temperature dependences can be interpreted as the influence of the frustrated magnetic state exhibited by manganese moments in the martensitic phase. A field-induced phase transition to the austenitic phase was observed for several concentrations around room temperature.  相似文献   

4.
The structure of Ni47Mn42In11 alloy after annealing has been investigated. It is shown that the martensitic transformation in Ni47Mn42In11 alloy upon cooling is accompanied by the formation of 14M modulated martensite. Crystallographic analysis of the martensite structure has been performed. The orientation relationships between the high-temperature austenitic phase and martensite and habit planes of the martensite plates have been determined.  相似文献   

5.
Low field inverse magnetocaloric effect (IMCE) associated with first-order martensitic transition in Ni50−x Mn37+x In13 (x=3,4,5) alloys was investigated. By tuning the composition of Ni/Mn, large change in the magnetization occurring between martensite and austenite phases in a narrow temperature interval was achieved, which results in large IMCE. Under low magnetic field change of 2 T, a large positive magnetic entropy change (ΔS M ) of 23.5 J/kg K with a net refrigeration capacity of 53 J/kg was obtained near room temperature (308 K) in the x=3 alloy. The results show that a small variation in Ni/Mn ratio significantly influences the martensitic transition temperature and the associated magnetic and magnetocaloric properties.  相似文献   

6.
敬超  陈继萍  李哲  曹世勋  张金仓 《物理学报》2008,57(7):4450-4455
利用电弧炉熔炼了Ni50Mn35In15多晶样品,根据磁性测量对其马氏体相变和磁热效应进行了系统研究.结果表明,随着温度的降低,样品在室温附近先后发生了二级磁相变与一级结构相变特征的马氏体相变,导致它的磁化强度产生突变. 同时通过低温下的磁滞回线的测量发现样品存在交换偏置行为,表明低温下马氏体相中铁磁和反铁磁共存. 此外,根据Maxwell方程,计算了样品在马氏体相变温度附近的磁熵变,当温度为309K,磁场改变5 T时,样品的磁熵变可达22.3J/kgK. 关键词: 哈斯勒合金 50Mn35In15')" href="#">Ni50Mn35In15 马氏体相变 磁热效应  相似文献   

7.
In this paper we report structural, magnetic and transport properties of strongly textured Ni51Mn36Sn13 thin films. The off-stoichiometric Heusler alloy films with 200 nm thickness were sputter-deposited on a MgO(100) substrate at 500 K and after annealed at 1000 K in UHV conditions. The textured growth was confirmed by x-ray diffraction in Bragg-Brentano geometry. The temperature dependence of the magnetic properties was measured by VSM and FMR methods. The electron transport measurements were carried out in function of temperature in 0 Oe and 50 kOe fields. All measurements corroborate the existence of the martensitic transformation in the film. Furthermore, transport measurements reveal an influence of the magnetic field on the transition temperature.  相似文献   

8.
The magnetization, the electrical resistivity, the specific heat, the thermal conductivity, and the thermal diffusion of a polycrystalline Heusler alloy Ni45.37Mn40.91In13.72 sample are studied. Anomalies, which are related to the coexistence of martensite and austenite phases and the change in their ratio induced by a magnetic field and temperature, are revealed and interpreted. The behavior of the properties of the alloy near Curie temperature TC also demonstrates signs of a structural transition, which suggests that the detected transition is a first-order magnetostructural phase transition. The nontrivial behavior of specific heat detected near the martensite transformation temperatures is partly related to a change in the electron density of states near the Fermi level. The peculiar peak of phonon thermal conductivity near the martensitic transformation is interpreted as a consequence of the appearance of additional soft phonon modes, which contribute to the specific heat and the thermal conductivity.  相似文献   

9.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

10.
A high-pressure optical zone-melting technique was employed to grow a Mn-rich Heusler Mn50Ni37Co3In10 unidirectional crystal in the present study. It was found that the Co-doped Mn50Ni37Co3In10 unidirectional crystal showed a low magnetic hysteretic loss and a widened working temperature interval in the vicinity of the martensitic transformation. The inverse magnetic entropy change (∆SM) reached 7.84 Jkg−1K−1 around 237.5 K under a magnetic field change of 30 kOe, and the corresponding effective refrigeration capacity (RCeff) was about 127.2 Jkg−1. The experimental results demonstrated a high potential to develop high-performance Mn-rich Heusler Mn–Ni–In magnetocaloric materials by means of Co doping in combination with the high-pressure optical zone-melting fabrication technique.  相似文献   

11.
The studies of magnetocaloric properties, phase transitions, and phenomena related to magnetic heterogeneity in the vicinity of the martensitic transition (MT) in Ni–Mn–In and Ni–Mn–Ga off-stoichiometric Heusler alloys are summarized. The crystal structure, magnetocaloric effect (MCE), and magnetotransport properties were studied for the following alloys: Ni50Mn50−xInx, Ni50−xCoxMn35In15, Ni50Mn35−xCoxIn15, Ni50Mn35In14Z (Z=Al, Ge), Ni50Mn35In15−xSix, Ni50−xCoxMn25+yGa25−y, and Ni50–xCoxMn32−yFeyGa18. It was found that the magnetic entropy change, ΔS, associated with the inverse MCE in the vicinity of the temperature of the magneto-structural transition, TM, persists in a range of (125-5) J/(kg K) for a magnetic field change ΔH=5 T. The corresponding temperature varies with composition from 143 to 400 K. The MT in Ni50Mn50−xInx (x=13.5) results in a transition between two paramagnetic states. Associated with the paramagnetic austenite-paramagnetic martensite transition ΔS=24 J/(kg K) was detected for ΔH=5 T at T=350 K. The variation in composition of Ni2MnGa can drastically change the magnetic state of the martensitic phase below and in the vicinity of TM. The presence of the martensitic phase with magnetic moment much smaller than that in the austenitic phase above TM leads to the large inverse MCE in the Ni42Co8Mn32−yFeyGa18 system. The adiabatic change of temperature (ΔTad) in the vicinity of TC and TM of Ni50Mn35In15 and Ni50Mn35In14Z (Z=Al, Ge) was found to be ΔTad=−2 K and 2 K for ΔH=1.8 T, respectively. It was observed that |ΔTad|≈1 K for ΔH=1 T for both types of transitions. The results on resistivity, magnetoresistance, Hall resistivity in some In-based alloys are discussed.  相似文献   

12.
The results of investigations of the magnetization, susceptibility, and magnetic-field-induced changes in the entropy of polycrystalline manganite (La0.6Ca0.4)0.9Mn1.1O3 near the magnetic phase transition have been presented. Magnetic measurements have been carried out at temperatures in the range from 210 to 310 K in magnetic fields of up to 9 T. The magnetocaloric effect has been revealed by measuring the magnetic-field dependences of magnetization. The magnitude of the magnetocaloric effect is compared with similar results obtained for other manganites.  相似文献   

13.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

14.
Effect of Al doping on the martensitic transition and magnetic entropy change in Mn50Ni40Sn10−xAlx was investigated. The experimental results show that the martensitic transition temperatures increase with the increase of Al content due to cell contraction, while the martensitic transition temperature range decreases rapidly. Mn50Ni40Sn8Al2 alloy has the largest value of  (3.14 J/kg K) for the magnetic field changing from 0 to 10 kOe, which is nearly twice as large as that of Mn50Ni40Sn10 alloy. It is demonstrated that a larger can be obtained due to the sharper magnetization change around martensitic transition.  相似文献   

15.
Yan-Rong Zhu  Ting-Feng Yi 《Ionics》2016,22(10):1759-1774
High-voltage spinel LiNi0.5Mn1.5O4 has been considered one of the most promising cathode materials for lithium-ion power batteries used in electrical vehicles (EVs) or hybrid electrical vehicles (HEVs) because the high voltage plateau at around 4.7 V makes its energy density (658 Wh kg?1) 30 and 25 % higher than that of conventional pristine spinel LiMn2O4 (440 Wh kg?1) or olivine LiFePO4 (500 Wh kg?1) materials, respectively. Unfortunately, LiNi0.5Mn1.5O4-based batteries with LiPF6-based carbonate electrolytes always suffer from severe capacity deterioration and poor thermostability because of the oxidization of organic carbonate solvents and decomposition of LiPF6, especially at elevated temperatures and water-containing environment. The major goal of this review is to highlight the recent advancements in the development of advanced electrolytes for improving the cycling stability and rate capacity of LiNi0.5Mn1.5O4-based batteries. Finally, an insight into the future research and further development of advanced electrolytes for LiNi0.5Mn1.5O4-based batteries is discussed.  相似文献   

16.
通过结构以及磁性测量,研究了哈斯勒合金Ni50Mn25+xSn25-x (x=11,12)的马氏体相变和磁热性质.结果表明,与样品在奥氏体相的磁性不同,由于在马氏体相中反铁磁交换作用的增强,导致铁磁和反铁磁在马氏体状态下共存.此外,通过Maxwell方程,研究了两样品在不同磁场变化下马氏体相变温度附近的反磁热性质,并阐明了该系列合金产生大的正磁熵变(ΔSM)不仅与其在降温过程中发生马氏体相变所导致的磁跃变(ΔM)有关,而且与发生马氏体相变所经历的温度区间有密切的联系. 关键词: 哈斯勒合金 Ni-Mn-Sn 马氏体相变 正磁熵变  相似文献   

17.
M. Kaya  Y. Elerman  I. Dincer 《哲学杂志》2018,98(21):1919-1932
The effect of heat treatment on the structural, magnetic and magnetocaloric properties of Ni43Mn46In11 melt-spun ribbons was systematically investigated using X-ray powder diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), magnetic force microscope (MFM) and magnetic measurements. From the XRD studies, tetragonal and cubic phases were detected at room temperature for as-spun, quenched and slow-cooled ribbons. Furthermore, it was observed, upon annealing martensite transition temperatures increased when compared to the as-spun ribbon. To avoid magnetic hysteresis losses in the vicinity of the structural transition region, the magnetic entropy changes-ΔS m of the investigated ribbons were evaluated from temperature-dependent magnetisation-M(T) curves on cooling for different applied magnetic fields. The maximum ΔS m value was found to be 6.79 J kg?1 K?1 for the quenched ribbon in the vicinity of structural transition region for a magnetic field change of 50 kOe.  相似文献   

18.
Based on ab initio and Monte Carlo simulations, we study the influence of the strength of the magnetic exchange parameters on the inverse and conventional magnetocaloric effect in the Ni50Mn34In16 Heusler alloy using the mixed Potts and Blume-Emery-Griffiths model Hamiltonian. Within the proposed model, the temperature dependences of the magnetization, tetragonal deformation, and adiabatic temperature changes for magnetic field variation are obtained. It is first shown that a decrease in the magnetic exchange interactions leads to increased values of the magnetocaloric effect. We suppose that a reduction of the exchange interactions in the Ni-Mn-In alloy can be realized by the doping with nonmagnetic atoms such as B, Si, Zn, Cu, etc.  相似文献   

19.
We investigated the stability of magnetic moments in Al69.8Pd12.1Mn18.1. This alloy exists in both, the icosahedral (i) and the decagonal (d) quasicrystalline form. The transition from the i- to the d-phase is achieved by a simple heat treatment. We present the results of measurements of the 27Al NMR-response, the dc magnetic susceptibility, and the low-temperature specific heat of both phases. In the icosahedral compound, the majority of the Mn ions carries a magnetic moment. Their number is reduced by approximately a factor of two by transforming the alloy to its decagonal variety. For both compounds, we have indications for two different local environments of the Al nuclei. The first reflects a low density of states of conduction electrons and a weak coupling of the Al nuclei to the Mn-moments. The second type of environment implies a large d-electron density of states at the Fermi level and a strong coupling to the magnetic Mn moments. Spin-glass freezing transitions are observed at Tdecaf=12 K for the decagonal, and Ticof=19 K for the icosahedral phase.  相似文献   

20.
Cr-doped layered oxides Li[Li0.2Ni0.2???x Mn0.6???x Cr2x ]O2 (x?=?0, 0.02, 0.04, 0.06) were synthesized by co-precipitation and high-temperature solid-state reaction. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TRTEM), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). XRD patterns and HRTEM results indicate that the pristine and Cr-doped Li1.2Ni0.2Mn0.6O2 show the layered phase. The Li1.2Ni0.16Mn0.56Cr0.08O2 shows the best electrochemical properties. The first discharge specific capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 249.6 mA h g?1 at 0.1 C, while that of Li1.2Ni0.2Mn0.6O2 is 230.4 mA h g?1. The capacity retaining ratio of Li1.2Ni0.16Mn0.56Cr0.08O2 is 97.9% compared with 93.9% for Li1.2Ni0.2Mn0.6O2 after 80 cycles at 0.2 C. The discharge capacity of Li1.2Ni0.16Mn0.56Cr0.08O2 is 126.2 mA h g?1 at 5.0 C, while that of the pristine Li1.2Ni0.2Mn0.6O2 is about 94.5 mA h g?1. XPS results show that the content of Mn3+ in the Li1.2Ni0.2Mn0.6O2 can be restrained after Cr doping during the cycling, which results in restraining formation of spinel-like structure and better midpoint voltages. The lithium-ion diffusion coefficient and electronic conductivity of Li1.2Ni0.2Mn0.6O2 are enhanced after Cr doping, which is responsible for the improved rate performance of Li1.2Ni0.16Mn0.56Cr0.08O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号