首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
裴伟东  刘忠信  陈增强  袁著祉 《物理学报》2008,57(11):6777-6785
传统的病毒传播模型在无限大无标度网络上不存在病毒传播阈值,即无论病毒的传播速率多么低,病毒始终能够在网络中传播.但研究发现,这个结论是在网络中存在超级传染者的假设下得到的,然而许多真实的无标度网络中并不存在超级传染者.因此,文章提出了一个最大传染能力限定的病毒传播模型,并从理论上证明了在最大传染能力限定的无限大无标度网络上,病毒传播阈值是存在的;同时,也分析了最大传染能力限定下非零传播阈值与有限规模网络下非零传播阈值的本质区别,并解释了为什么人们总是认为传统病毒传播模型对许多真实网络病毒感染程度估计过高的 关键词: 无标度网络 最大传染能力 传播阈值 感染程度  相似文献   

2.
李旲  刘旸  山秀明  任勇  焦健  仇贲 《中国物理》2005,14(11):2153-2157
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptibleinfected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.  相似文献   

3.
一种基于元胞自动机的自适应网络病毒传播模型   总被引:1,自引:0,他引:1       下载免费PDF全文
宋玉蓉  蒋国平  徐加刚 《物理学报》2011,60(12):120509-120509
自适应网络是节点动力学和网络动力学相互作用和反馈的演化网络. 基于元胞自动机建立自适应网络中易感-感染-易感(susceptible-infected-susceptible)的病毒传播模型,研究节点为了规避病毒传播所采取的多种网络重连规则对病毒传播及网络统计特征的影响. 结果表明:自适应网络中的重连规则可以有效减缓病毒传播速度,降低病毒传播规模;随机重连规则使得网络统计特征趋于随机网络;基于元胞自动机建立的传播模型清晰地表达了病毒在传播过程中的双稳态现象. 关键词: 自适应网络 传播动力学 网络动力学 元胞自动机  相似文献   

4.
Thresholds for epidemic spreading in networks   总被引:1,自引:0,他引:1  
We study the threshold of epidemic models in quenched networks with degree distribution given by a power-law. For the susceptible-infected-susceptible model the activity threshold λ(c) vanishes in the large size limit on any network whose maximum degree k(max) diverges with the system size, at odds with heterogeneous mean-field (HMF) theory. The vanishing of the threshold has nothing to do with the scale-free nature of the network but stems instead from the largest hub in the system being active for any spreading rate λ>1/√k(max) and playing the role of a self-sustained source that spreads the infection to the rest of the system. The susceptible-infected-removed model displays instead agreement with HMF theory and a finite threshold for scale-rich networks. We conjecture that on quenched scale-rich networks the threshold of generic epidemic models is vanishing or finite depending on the presence or absence of a steady state.  相似文献   

5.
6.
Wu Q  Fu X  Small M  Xu XJ 《Chaos (Woodbury, N.Y.)》2012,22(1):013101
We explore the impact of awareness on epidemic spreading through a population represented by a scale-free network. Using a network mean-field approach, a mathematical model for epidemic spreading with awareness reactions is proposed and analyzed. We focus on the role of three forms of awareness including local, global, and contact awareness. By theoretical analysis and simulation, we show that the global awareness cannot decrease the likelihood of an epidemic outbreak while both the local awareness and the contact awareness can. Also, the influence degree of the local awareness on disease dynamics is closely related with the contact awareness.  相似文献   

7.
The Barabasi-Albert (BA) model with finite-precision preferential attachment is used to build a wide range of network structures. Spreading epidemics and collective dynamics are investigated on such complex networks. Numerical simulations reveal a transition from an exponential scaling to a power-law distribution of link numbers per node along with the increase of the tuning parameter ω. The collective synchronization induced by the Susceptible-Infected-Recovered-Susceptible (SIRS) epidemiological process is shown to depend on the topological structure of the network.  相似文献   

8.
《Physics letters. A》1996,210(3):183-188
We present a lattice-based epidemic model of a nonfatal communicable disease in a mobile host population in which novel dynamical behaviour is observed. The model exhibits temporal and spatial fluctuations over a wide range of time scales with a power spectrum of 1/ƒ1.2 form. The consequences of this scaling behaviour for prevalence of endemic disease is discussed.  相似文献   

9.
Zimo Yang  Ai-Xiang Cui  Tao Zhou 《Physica A》2011,390(23-24):4543-4548
Recent empirical observations suggest a heterogeneous nature of human activities. The heavy-tailed inter-event time distribution at the population level is well accepted, while whether the individual acts in a heterogeneous way is still under debate. Motivated by the impact of temporal heterogeneity of human activities on epidemic spreading, this paper studies the susceptible-infected model on a fully mixed population, where each individual acts in a completely homogeneous way but different individuals have different mean activities. Extensive simulations show that the heterogeneity of activities at the population level remarkably affects the speed of spreading, even though each individual behaves regularly. Furthermore, the spreading speed of this model is more sensitive to the change of system heterogeneity compared with the model consisted of individuals acting with heavy-tailed inter-event time distributions. This work refines our understanding of the impact of heterogeneous human activities on epidemic spreading.  相似文献   

10.
11.
L. Acedo  Abraham J. Arenas 《Physica A》2010,389(5):1151-1157
In this article, we generalize a recently proposed method to obtain an exact general solution for the classical Susceptible, Infected, Recovered and Susceptible (SIRS) epidemic mathematical model. This generalization is based upon the nonlinear coupling of two frequencies in an infinite modal series solution. It is shown that these series provide a nonstandard approach in order to obtain an accurate analytical solution for the classical SIRS epidemic model. Numerical results of the SIRS epidemic model for real and complex frequencies are included in order to test the validity and reliability of the method. This method could be applied to a wide class of models in physics, chemistry or engineering.  相似文献   

12.
An SIS network model incorporating the influence of media coverage on transmission rate is formulated and analyzed. We calculate the basic reproduction number R0R0 by utilizing the local stability of the disease-free equilibrium. Our results show that the disease-free equilibrium is globally asymptotically stable and that the disease dies out if R0R0 is below 1; otherwise, the disease will persist and converge to a unique positive stationary state. This result may suggest effective control strategies to prevent disease through media coverage and education activities in finite-size scale-free networks. Numerical simulations are also performed to illustrate our results and to give more insights into the dynamical process.  相似文献   

13.
T. Morita  T. Horiguchi 《Physica A》1975,83(3):519-532
It is shown that the thermodynamic quantities and spin correlation functions of the classical Heisenberg model on a linear chain are expressed in terms of the eigenvalue with the smallest absolute value and the corresponding eigenfunction of a homogeneous linear integral equation, where the range of the interaction is assumed to be finite. The magnetization and susceptibility at nonzero external magnetic fields are given as a function of temperature, for the case of the nearest neighbour ferromagnetic and antiferromagnetic interaction. Efforts are paid to determine the properties near zero temperature.  相似文献   

14.
黄炜  姜锐  胡茂彬  吴清松 《中国物理 B》2009,18(4):1306-1311
We study the effect of incubation period on epidemic spreading in the Barabasi--Albert scale-free network and the Watts--Strogatz small world network by using a Suspectable-Incubated-Infected-Suspectable model. Our analytical investigations show that the epidemic threshold is independent of incubation period in both networks, which is verified by our large-scale simulation results. We also investigate the effect of incubation period on the epidemic dynamics in a supercritical regime. It is found that with the increase of incubation period Ω , a damped oscillation evolution of ρT(the ratio of persons in incubated state) appears and the time needed to reach a saturation value increases. Moreover, the steady value of ρT increases and approaches to an asymptotic constant with the value of {\it\Omega} increasing. As a result, the infected ratio ρI decreases with the increase of Ω according to a power law.  相似文献   

15.
We studied damage spreading in a Driven Lattice Gas (DLG) model as a function of the temperature TT, the magnitude of the external driving field EE, and the lattice size. The DLG model undergoes an order–disorder second-order phase transition at the critical temperature Tc(E)Tc(E), such that the ordered phase is characterized by high-density strips running along the direction of the applied field; while in the disordered phase one has a lattice-gas-like behavior. It is found that the damage always spreads for all the investigated temperatures and reaches a saturation value DsatDsat that depends only on TT. DsatDsat increases for T<Tc(E=∞)T<Tc(E=), decreases for T>Tc(E=∞)T>Tc(E=) and is free of finite-size effects. This behavior can be explained as due to the existence of interfaces between the high-density strips and the lattice-gas-like phase whose roughness depends on TT. Also, we investigated damage spreading for a range of finite fields as a function of TT, finding a behavior similar to that of the case with E=∞E=.  相似文献   

16.
Exploring temporal behaviors of the epidemic spreading is of particular importance, in which field an interesting phenomenon of hierarchical spreading cascade has already been demonstrated. By taking into account the effect of density of infected neighbors around an individual in the definition of spreading rate, an infection mechanism modulated by a parameter is introduced in the present paper. Under the mechanism temporal behaviors on the scale-free network are shown to be different, corresponding to different parameters. Three distinct hierarchical spreading modes are typically exhibited. In addition, a novel way to depict the dynamical processes of the epidemic spreading is also developed and some new features are, thus, clearly displayed.  相似文献   

17.
自适应网络中病毒传播的稳定性和分岔行为研究   总被引:2,自引:0,他引:2       下载免费PDF全文
鲁延玲  蒋国平  宋玉蓉 《物理学报》2013,62(13):130202-130202
自适应复杂网络是以节点状态与拓扑结构之间存在反馈回路为特征的网络. 针对自适应网络病毒传播模型, 利用非线性微分动力学系统研究病毒传播行为; 通过分析非线性系统对应雅可比矩阵的特征方程, 研究其平衡点的局部稳定性和分岔行为, 并推导出各种分岔点的计算公式. 研究表明, 当病毒传播阈值小于病毒存在阈值, 即R00c时, 网络中病毒逐渐消除, 系统的无病毒平衡点是局部渐近稳定的; R0c0<1时, 网络出现滞后分岔, 产生双稳态现象, 系统存在稳定的无病毒平衡点、较大稳定的地方病平衡点和较小不稳定的地方病平衡点; R0>1时, 网络中病毒持续存在, 系统唯一的地方病平衡点是局部渐近稳定的. 研究发现, 系统先后出现了鞍结分岔、跨临界分岔、霍普夫分岔等分岔行为. 最后通过数值仿真验证所得结论的正确性. 关键词: 自适应网络 稳定性 分岔 基本再生数  相似文献   

18.
19.
张国锋 《中国物理》2007,16(7):1855-1857
In this paper the so-called sudden death effect of entanglement is investigated in a quantum model. The results show that one can expect the resurrection of the original entanglement to occur in a periodic way following each sudden death event. The length of the time interval for the zero entanglement depends not only on the degree of entanglement of the initial state but also on the initial state.  相似文献   

20.
In this Letter, we firstly propose an epidemic network model incorporating two controls which are vaccination and treatment. For the constant controls, by using Lyapunov function, global stability of the disease-free equilibrium and the endemic equilibrium of the model is investigated. For the non-constant controls, by using the optimal control strategy, we discuss an optimal strategy to minimize the total number of the infected and the cost associated with vaccination and treatment. Table 1 and Figs. 1–5 are presented to show the global stability and the efficiency of this optimal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号