首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The smallest number of edges that have to be deleted from a graph to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper we determine the bipartite edge frustration of some classes of composite graphs.  相似文献   

5.
Let G be a simple m×n bipartite graph with mn. We prove that if the minimum degree of G satisfies δ(G)m2+1, then G is bipanconnected: for every pair of vertices x,y, and for every appropriate integer 2?2n, there is an x,y-path of length ? in G.  相似文献   

6.
《Discrete Mathematics》2022,345(12):113083
Let G be a graph, ν(G) the order of G, κ(G) the connectivity of G and k a positive integer such that k(ν(G)?2)/2. Then G is said to be k-extendable if it has a matching of size k and every matching of size k extends to a perfect matching of G. A Hamiltonian path of a graph G is a spanning path of G. A bipartite graph G with vertex sets V1 and V2 is defined to be Hamiltonian-laceable if such that |V1|=|V2| and for every pair of vertices pV1 and qV2, there exists a Hamiltonian path in G with endpoints p and q, or |V1|=|V2|+1 and for every pair of vertices p,qV1,pq, there exists a Hamiltonian path in G with endpoints p and q. Let G be a bipartite graph with bipartition (X,Y). Define bn(G) to be a maximum integer such that 0bn(G)<min{|X|,|Y|} and (1) for each non-empty subset S of X, if |S||X|?bn(G), then |N(S)||S|+bn(G), and if |X|?bn(G)<|S||X|, then N(S)=Y; and (2) for each non-empty subset S of Y, if |S||Y|?bn(G), then |N(S)||S|+bn(G), and if |Y|?bn(G)<|S||Y|, then N(S)=X; and (3) bn(G)=0 if there is no non-negative integer satisfying (1) and (2).Let G be a bipartite graph with bipartition (X,Y) such that |X|=|Y| and bn(G)>0. In this paper, we show that if ν(G)2κ(G)+4bn(G)?4, then G is Hamiltonian-laceable; or if ν(G)>6bn(G)?2, then for every pair of vertices xX and yY, there is an (x,y)-path P in G with |V(P)|6bn(G)?2. We show some of its corollaries in k-extendable, bipartite graphs and a conjecture in k-extendable graphs.  相似文献   

7.
Most biological networks have some common properties, on which models have to fit. The main one is that those networks are scale-free, that is that the distribution of the vertex degrees follows a power-law. Among the existing models, the ones which fit those characteristics best are based on a time evolution which makes impossible the analytic calculation of the number of motifs in the network. Focusing on applications, this calculation is very important to decompose networks in a modular manner, as proposed by Milo et al.. On the contrary, models whose construction does not depend on time, miss one or several properties of real networks or are not computationally tractable. In this paper, we propose a new random graph model that satisfies the global features of biological networks and the non-time-dependency condition. It is based on a bipartite graph structure, which has a biological interpretation in metabolic networks.  相似文献   

8.
Fuji Zhang 《Discrete Mathematics》2006,306(13):1415-1423
A graph G is said to be bicritical if G-u-v has a perfect matching for every choice of a pair of points u and v. Bicritical graphs play a central role in decomposition theory of elementary graphs with respect to perfect matchings. As Plummer pointed out many times, the structure of bicritical graphs is far from completely understood. This paper presents a concise structure characterization on bicritical graphs in terms of factor-critical graphs and transversals of hypergraphs. A connected graph G with at least 2k+2 points is said to be k-extendable if it contains a matching of k lines and every such matching is contained in a perfect matching. A structure characterization for k-extendable bipartite graphs is given in a recursive way. Furthermore, this paper presents an O(mn) algorithm for determining the extendability of a bipartite graph G, the maximum integer k such that G is k-extendable, where n is the number of points and m is the number of lines in G.  相似文献   

9.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

10.
For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s and t such that 2 ≤ st, 0 ≤ msnt, and m + n ≤ 2s + t − 1, we prove that if G has at least mn − (2(ms) + nt) edges then it contains a subdivision of the complete bipartite K (s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn − (2(ms) + nt + 1) edges for this topological Turan type problem.  相似文献   

11.
12.
Let BCd,k be the largest possible number of vertices in a bipartite Cayley graph of degree d and diameter k. We show that BCd,k≥2(k−1)((d−4)/3)k−1 for any d≥6 and any even k≥4, and BCd,k≥(k−1)((d−2)/3)k−1 for d≥6 and k≥7 such that k≡3 (mod 4).  相似文献   

13.
Computing a maximum weighted stable set in a bipartite graph is considered well-solved and usually approached with preflow-push, Ford-Fulkerson or network simplex algorithms. We present a combinatorial algorithm for the problem that is not based on flows. Numerical tests suggest that this algorithm performs quite well in practice and is competitive with flow based algorithms especially in the case of dense graphs.  相似文献   

14.
Let G=(V1,V2;E) be a bipartite graph with |V1|=|V2|=3k, where k>0. In this paper it is proved that if d(x)+d(y)≥4k−1 for every pair of nonadjacent vertices xV1, yV2, then G contains k−1 independent cycles of order 6 and a path of order 6 such that all of them are independent. Furthermore, if d(x)+d(y)≥4k for every pair of nonadjacent vertices xV1, yV2 and k>2, then G contains k−2 independent cycles of order 6 and a cycle of order 12 such that all of them are independent.  相似文献   

15.
F.M. Dong  K.M. Koh 《Discrete Mathematics》2008,308(11):2285-2287
It is well known that (-∞,0) and (0,1) are two maximal zero-free intervals for all chromatic polynomials. Jackson [A zero-free interval for chromatic polynomials of graphs, Combin. Probab. Comput. 2 (1993), 325-336] discovered that is another maximal zero-free interval for all chromatic polynomials. In this note, we show that is actually a maximal zero-free interval for the chromatic polynomials of bipartite planar graphs.  相似文献   

16.
The energy of a graph is the sum of the absolute values of the eigenvalues of the graph. In a paper [G. Caporossi, D. Cvetkovi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996] Caporossi et al. conjectured that among all connected graphs G with n≥6 vertices and n−1≤m≤2(n−2) edges, the graphs with minimum energy are the star Sn with mn+1 additional edges all connected to the same vertices for mn+⌊(n−7)/2⌋, and the bipartite graph with two vertices on one side, one of which is connected to all vertices on the other side, otherwise. The conjecture is proved to be true for m=n−1,2(n−2) in the same paper by Caporossi et al. themselves, and for m=n by Hou in [Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. 29 (2001) 163-168]. In this paper, we give a complete solution for the second part of the conjecture on bipartite graphs. Moreover, we determine the graph with the second-minimal energy in all connected bipartite graphs with n vertices and edges.  相似文献   

17.
A graph is traceable if it contains a Hamiltonian path. We present a connected non-traceable cubic bipartite planar graph with 52 vertices and prove that there are no smaller such graphs.  相似文献   

18.
Bipartite edge frustration of a graph is defined as the smallest number of edges that have to be deleted from the graph to obtain a bipartite spanning subgraph. We show that for fullerene graphs this quantity can be computed in polynomial time and obtain explicit formulas for the icosahedral fullerenes. We also report some computational results and discuss a potential application of this invariant in the context of fullerene stability.  相似文献   

19.
It is shown that, if t is an integer ≥3 and not equal to 7 or 8, then there is a unique maximal graph having the path Pt as a star complement for the eigenvalue ?2. The maximal graph is the line graph of Km,m if t = 2m?1, and of Km,m+1 if t = 2m. This result yields a characterization of L(G ) when G is a (t + 1)‐vertex bipartite graph with a Hamiltonian path. The graphs with star complement PrPs or PrCs for ?2 are also determined. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 137–149, 2003  相似文献   

20.
A graph is polar if the vertex set can be partitioned into A and B in such a way that the subgraph induced by A is a complete multipartite graph and the subgraph induced by B is a disjoint union of cliques. Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. However, recognizing polar graphs is an NP-complete problem in general. This led to the study of the polarity of special classes of graphs such as cographs and chordal graphs, cf. Ekim et al. (2008) [7] and [5]. In this paper, we study the polarity of line graphs and call a graph line-polar if its line graph is polar. We characterize line-polar bipartite graphs in terms of forbidden subgraphs. This answers a question raised in the fist reference mentioned above. Our characterization has already been used to develop a linear time algorithm for recognizing line-polar bipartite graphs, cf. Ekim (submitted for publication) [6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号