首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Labelling of meso-2,3-dimercaptosuccinic acid (DMSA) with technetium-99m was reinvestigated. Dependence of the 99mTc-DMSA complex formation on the molar ratio of DMSA:reducing agent (SnCl2·2H2O) and pH was studied. Five different types of 99mTc-DMSA complexes were determined. Especially three different complexes were established in the clinically used and prepared DMSA kit labelled with 99mTc under alkaline condition. This radiopharmaceutical is used as imaging agent of the primary medullary carcinoma in the thyroid gland and different metastasis types. The existence of all complexes was observed by paper chromatography, paper electrophoresis and high performance liquid chromatography.  相似文献   

2.
DMSA-coated Fe3O4 nanoparticles were synthesized by wet-chemical method. The chemical interaction between Fe3O4 and DMSA were investigated by FTIR. They were directly radiolabeled with 99mTc radioisotope (Fe3O4@DMSA–99mTc) at room temperature in the presence of stannous solution as a reducing agent. Magnetic and structure properties of Fe3O4@DMSA–99mTc nanoparticles were investigated by AGFM, TEM, and XRD. Biodistribution and toxicity assessment of Fe3O4@DMSA–99mTc were studied in mice by intravenous and intraperitoneally injections, respectively. Blood, kidney, and liver factors were measured 4 days post injection and at the mean-while tissue sections were prepared from their kidney and liver. The results indicate that, the Fe3O4@DMSA–99mTc nanoparticles were passed through the membrane of different cells but do not create any disorder in the kidney and liver function even in high doses such as 300 mg/kg.  相似文献   

3.
Technetium-99m (99mTc) is one of the most frequently used nuclides for single-photon emission computed tomography (SPECT) imaging because of its radiochemical characteristics, such as gamma emission of suitable energy (141 keV) and adequate half-life (6.01 h). Although triaquatricarbonyl 99mTc cation ([99mTc(CO)3(H2O)3]+) has several advantages as a 99mTc-labeling agent, e.g., compact chelate size, chelate stability, and simplicity of preparation, its synthetic protocols should be improved. Because microwave heating is a convenient method for synthetic reactions, we studied the effect of microwave irradiation on the synthesis of 99mTc tricarbonyl complexes. We found several factors beneficial for the preparation of nuclear medicines. In particular, microwave heating promoted one-pot syntheses of 99mTc tricarbonyl chelates in a short time. In addition, the 99mTc tricarbonyl complex could be obtained using low concentrations of ligands.  相似文献   

4.
Mixed ligand fac-tricarbonyl complex of [99mTc(CO)3-DMSA-MIBI] has been prepared starting from the precursor [99mTc(OH2)3(CO)3]+. The complex can be obtained in good yield and purity in a two-step procedure by first attaching meso-2,3-dimercaptosuccinic acid (DMSA, HOOCCH(SH)CH(SH)COOH) with [99mTc(OH2)3(CO)3]+, followed by addition of MIBI [tetrakis-2-methoxyisobutylisonitrile (CH3OC(CH3)2CH2-N≡C) copper(I) tetrafluoroborate] solution. The complex was characterized by TLC and HPLC and was studied by means of octanol-water partition coefficient, electrophoresis, stability in vitro, and normal mice experiment. Biodistribution in mice demonstrated that the complex showed higher myocardial uptake after 0.5-hour p.i. The ratios of heart/liver (%ID/g) in the case of 99mTc(CO)3-DMSA-MIBI was higher (1.88) than that observed in case of 99mTc-MIBI1 (0.93) after 0.5-hour p.i. (P<0.05). Results showed that the complex may be developed to a novel myocardial perfusion-imaging agent.  相似文献   

5.
The organometallic precursor of fac-[99mTc(CO)3(H2O)3]+ has attracted much attention because of the robustness and small size of Tc(I)-tricarbonyl complexes compared to Tc(V) complexes and the good labeling affinity with a variety of donor atoms. Among various ligand systems, an iminodiacetic acid (IDA) was proven as a good chelating group to form a Tc(III)-compelx as well as has been shown its potential as a chelating system for fac-[99mTc(CO)3] precursor. In an attempt to confirm the similarity and the difference between 99mTc(CO)3-IDA and 99mTc-(IDA)2-complex, M(CO)3-IDA (M = 99mTc, Re) complexes of disofenin, mebrofenin and N-(3-iodo-2,4,6-trimethyl phenylcarbamoylmethyl) iminodiacetic acid were prepared, and the biological evaluation of 99mTc(CO)3-disofenin was performed. The 99mTc(CO)3-IDA complexes were prepared with a high radiolabeling yield (>98%) in a quantitative manner and showed a negative charge. The in vivo pharmacokinetic behavior of 99mTc(CO)3-disofenin showed a similar biological activity to 99mTc-(disofenin)2 in that those complexes were quickly cleared from the blood by the hepatocytes and excreted into the gallbladder and intestine. Accordingly, the 99mTc(CO)3-IDA derivatives of disofenin and mebrofenin might be used as hepatobiliary imaging agents. Since an IDA is a promising chelator for 99mTc-based radiopharmaceutical and the biological properties of 99mTc(CO)3-IDA derivative shows similar to that of 99mTc-complex, a biomolecule containing IDA can be freely radiolabeled with fac-[99mTc(CO)3]-precursor or 99mTc. However, the radiolabeling efficiency and the biological behavior demonstrates the favorable properties of 99mTc(CO)3-IDA compound for the development of a new imaging agent.  相似文献   

6.
Isocyanide is a strong coordination ligand that can coordinate with [99mTc(I)(CO)3]+ core and [99mTc(I)]+ core to produce stable 99mTc complexes, therefore developing a 99mTc-labeled isocyanide complex for single-photon emission computed tomography (SPECT) imaging is considered to be of great interest. In order to develop potential tumor imaging agents with satisfied tumor uptake and suitable pharmacokinetic properties in vivo, a novel d -glucosamine isocyanide derivative, 4-isocyano-N-(2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)butanamide (CN3DG), was synthesized and radiolabeled with [99mTc(I)]+ and [99mTc(CO)3]+ cores to obtain [99mTc(CN3DG)6]+ and [99mTc(CO)3(CN3DG)3]+ in high radiolabeling yields (>95%). Both of the complexes showed good hydrophilicity and great stability in vitro. Cell uptake studies performed in S180 cells demonstrated they were transported into cells by glucose transporters. Biodistribution studies of the two complexes in mice bearing S180 tumor showed they had high tumor uptakes and rapid clearance from muscle and blood so that the tumor/blood and tumor/muscle ratios were high. By comparison, [99mTc(CN3DG)6]+ was superior to [99mTc(CO)3(CN3DG)3]+ in regard to tumor uptake, tumor/blood and tumor/liver ratios. S180 tumors could be seen clearly from the SPECT/CT images with [99mTc(CN3DG)6]+. Considering its favorable properties, [99mTc(CN3DG)6]+ would be a promising tumor imaging agent and needs to be further studied.  相似文献   

7.
The analyses of 99gTc-DMSA complexes prepared under alkali and acidic reactions were reported. Modern analytical, separation and spectral methods such as NMR (1H-NMR, 13C-NMR, APT, COSY and HSQC) and Q-TOF HPLC–MS/MS system with ESI were employed to determine the identity and characterization of the products. The structure of 99gTc(V)DMSA was clearly confirmed and its fragmentation path in negative and positive ionisation mode was suggested. The effect of ascorbic acid and new alternative labelling with the use of NH 4 99g TcOCl4 was examined. Surprisingly, 99gTc(III)DMSA complex was not formed under acidic reaction conditions. 99gTc(V)DMSA complex was the main reaction product under both experimental conditions. This result suggests the key role of 99g/99mTc concentration during the process of radiopharmaceuticals preparation.  相似文献   

8.
张亚东  陆洁 《化学进展》2010,22(4):603-609
叶酸受体在许多源于上皮组织的恶性肿瘤中高度表达,是目前肿瘤放射性显像研究的一个新的靶点。由于叶酸对于叶酸受体具有很高的亲和性,作为重要的特异性靶向介导分子,99mTc标记叶酸肿瘤显像剂已成为当前放射性药物的研究热点之一。本文对不同类型的99mTc标记的叶酸类放射性肿瘤显像剂的研究进展、应用情况和存在的问题进行了评述,探讨了99mTc标记叶酸显像剂的一般设计方法,并对其未来发展方向进行了展望。  相似文献   

9.
99mTc-Sestamibi has been playing an important role in the cardiac imaging for the last decades. Previously, we reported that [99mTc(CO)3(MIBI)3]+ demonstrated a significant location in myocardium with a lower liver uptake as compared with 99mTc-Sestamibi. In this work, we found that new [99mTc(CO)2(MIBI)4]+ could be prepared with high radiochemical purity. The inter-transformations between [99mTc(CO)3(H2O)(MIBI)2]+, [99mTc(CO)3(MIBI)3]+, and [99mTc(CO)2(MIBI)4]+ were investigated and biodistribution was performed to evaluate the [99mTc(CO)2(MIBI)4]+ as a myocardial perfusion imaging agent. The results showed that one more CO was replaced by MIBI slowing down the pharmacokinetics. The structure characterization was performed on their corresponding rhenium complexes, and the results indicated that there were differences between 99mTc-CO-MIBI and Re-CO-MIBI in preparation and hydrophobic characteristics.  相似文献   

10.
Summary The organometallic precursor fac-[99mTc(CO)3(H2O)3]+ was reacted with N-ethoxy, N-ethyl dithiocarbamate (NOET) in phosphate buffered saline (pH 7.4) at room temperature for 30 minutes to produce the 99mTc(CO)3-NOET complex. The radiochemical purity (RCP) of the product was over 90% as measured by thin layer chromatography (TLC). No decomposition of the complex at room temperature (RT) was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The biodistribution comparison in mice of the 99mTc(CO)3-NOET complex and the 99mTcN-NOET complex showed that the former had a lower heart and brain uptake as compared to that of the latter, suggesting the incorporation of the [99mTc(CO)3]+ core into the NOET ligand does not improve the biological features as a myocardial imaging agent.  相似文献   

11.
[99mTc(I)]+ and [99mTc(I)(CO)3]+ complexes with isocyanide exhibit high stability, which makes them suitable platforms to develop novel 99mTc radiopharmaceuticals. To develop novel 99mTc radiotracers for imaging hypoxia, in this study, a novel L ligand (4-nitroimidazole isocyanide derivative) was synthesized and labelled using [99mTc(I)]+ core and [99mTc(I)(CO)3]+ core to produce [99mTc(L)6]+ and [99mTc(CO)3(L)3]+ with high yields. To verify the structure of the 99mTc complexes, corresponding rhenium analogues were synthesized and characterized. Both of the 99mTc complexes were stable and hydrophilic. in vitro cellular uptake results showed they could exhibit good hypoxic selectivity. The evaluation of biodistribution in mice bearing S180 tumors indicated both of them could accumulate in tumor. Between them, [99mTc(L)6]+ exhibited higher tumor uptake and tumor/non-target ratio than [99mTc(CO)3(L)3]+. Further, single photon emission computed tomography (SPECT) imaging studies of [99mTc(L)6]+ indicated an obvious accumulation in tumor and the value of the region-of-interest (ROI) ratio of the uptake for the tumor site to the corresponding non-tumor region was 5.64 ± 0.52. The above results suggested [99mTc(L)6]+ would be a potential tracer for imaging tumor hypoxia.  相似文献   

12.
Labelling of 5-aminolevulinic acid (5-ALA) with 99mTc was achieved by using SnCl2·2H2O as reducing agent. Radiochemical purity and labelling efficiency was determined by instant thin layer chromatography/paper chromatography. Efficiency of labelling was dependent on many parameters such as amount of ligand, reducing agent, pH, and time of incubation. 99mTc labelled 5-ALA remained stable for 24 h in human serum. Tissue biodistribution of 99mTc-5-ALA was evaluated in Sprague–Dawley rats. Biodistribution study (% ID/g) in rats revealed that 99mTc-5-ALA was accumulated significantly in liver, spleen, stomach and intestine after half hour, 4 and 24 h. Significant activity was noted in bladder and urine at 4 h. High liver uptake of 99mTc-5-ALA makes it a promising liver imaging agent.  相似文献   

13.
Bisphosphonates can be labeled with Technetium-99m (99mTc) and are used for bone imaging because of their good localization in the skeleton and rapid clearance from soft tissues. Over the last decades bone scintigraphy has been used extensively in the evaluation of oncological patients to provide information about the sites of bone lesions, their prognosis and the effectiveness of therapy by showing the sequential changes in tracer uptake. Since the lesion visualization and lesion/bone ratio are important utilities for a bone scanning radiopharmaceutic; in this study incorporation of 99mTc labeled alendronate sodium (99mTc–ALD) was evaluated in U2OS (human bone osteosarcoma) and NCI-H209 (human bone carcinoma) cell lines. ALD was directly labeled by 99mTc, radiochemical purity and stability of the complex were analyzed by radioactive thin layer chromatography and radioactive high performance liquid chromatography studies. For cell incorporation study, NCI-H209 and U2OS cell lines were used with standard cell culture methods. The six well plates were used for all experiments and the integrity of each cell monolayer was checked by measuring its transepithelial electrical resistance (TEER) with an epithelial voltammeter. Results confirmed that ALD was successfully radiolabeled with 99mTc. 99mTc–ALD incorporated with NCI-H209 and U2OS cells. The uptake percentages of 99mTc–ALD in NCI-H209 and U2OS cell lines were found significantly different. Since 99mTc–ALD highly uptake in cancer cell line, the results demonstrated that radiolabeled ALD may be a promising agent for bone cancer diagnosis.  相似文献   

14.
A procedure for the radiochemical purity control of99mTc-(2,3-dimercaptosuccinic acid) (DMSA), used as a renal scintigraphic agent is described. The proposed chromatographic system entails the use of two successive solvents, first MEK and second aqueous solution of 5% glycine, on the same supporting medium Gelman ITLC-SG. The procedure is fast and leads to separation and estimation of free pertechnetate, hydrolyzed form of99mTc and99mTc — DMSA. This system is superior to the others reported in the literature as the spots of the different species are more distinguished and more concentrated. Its reliability has been studied using dimercaptosuccinic acid kits of different manufacturers and the results have been checked biologically.  相似文献   

15.
Ligand exchange is one of the possible synthetic routes to obtain99mTc coordination compounds. However, the success of this route depends on the availability of good precursors. The objective of this work is the preparation of the complex [99mTc(tu)6]3+ (tu = thiourea), as a potential precursor for99mTc(III) coordination compounds. The preparation was successfully performed in acidic conditions, the excess of tu serving as reducing agent. At pH values higher than 3, the compound becomes unstable and on addition of polydentate ligands new Tc(III) complexes are formed. With edta, the complex99mTc(III)-edta was obtained in high yield.  相似文献   

16.
Hydrogen sulfide (H2S) is the third gasotransmitter and is generated endogenously in hypoxic or inflammatory tissues and various cancers. We have recently demonstrated that endogenous H2S can be imaged with [99mTc]Tc-gluconate. In the present study, we detected H2S generated in hypoxic tissue, both in vitro and in vivo, using [99mTc]Tc-gluconate. In vitro uptake of [99mTc]Tc-gluconate was measured under hypoxic and normoxic conditions, using the colon carcinoma cell line CT26, and was higher in hypoxic cells than that in normoxic cells. An acute hindlimb ischemia-reperfusion model was established in BALB/c mice by exposing the animals to 3 h of ischemia and 3 h of reperfusion prior to in vivo imaging. [99mTc]Tc-gluconate (12.5 MBq) was intravenously injected through the tail vein, and uptake in the lower limb was analyzed by single-photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT images showed five times higher uptake in the ischemic limb than that in the normal limb. The standard uptake value (SUVmean) of the ischemic limb was 0.39 ± 0.03, while that of the normal limb was 0.07 ± 0.01. [99mTc]Tc-gluconate is a novel imaging agent that can be used both in vitro and in vivo for the detection of endogenous H2S generated in hypoxic tissue.  相似文献   

17.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of 99mTc(CO)3-labeled pegylated (PEG) 2-nitroimidazoles for tumor hypoxia imaging. The novel 2-nitroimidazole derivatives were successfully synthesized by conjugation of tridendate chelators to 2-nitroimidazole via PEG3 linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core to get cationic [99mTc(CO)3(BPA-PEG3-NIM)]+, neutral [99mTc(CO)3(AOPA-PEG3-NIM)] and anionic [99mTc(CO)3(IDA-PEG3-NIM)]? respectively, all of which were hydrophilic and stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3-labeled pegylated 2-nitroimidazoles accumulated in the tumor with low uptake. 99mTc-chelate and charge had significant impact on partition coefficient, radiotracer tumor uptake and pharmacokinetic properties. The results indicate the need for synthetic modification of the parent 2-nitroimidazole derivatives and the 99mTc-chelate with a view to improve the tumor targeting efficacy and in vivo kinetic profiles.  相似文献   

18.
Shikonin was isolated from Ratanjot pigment then the obtained shikonin was well characterized. This study is aimed to optimize radiolabeling yield of shikonin with 99mTc with respect to factors that affect the reaction conditions such as shikonin amount, SnCl2·2H2O amount, reaction time and pH of the reaction mixture. In vitro stability of the radiolabeled complex was checked and it was found to be stable for up to 6?h. Biodistribution studies showed that, 99mTc?Cshikonin accumulate in tumor sites with higher T/NT than other currently available 99mTc(CO)3-VIP, 99mTc?Cnitroimidazole analogues and 99mTc?Cpolyamine analogues indicating that shikonin deliver 99mTc to the tumor sites with a percentage sufficient for imaging and can overcome many drawbacks of other radiopharmaceuticals used for tumor imaging.  相似文献   

19.
A new formulation of a freeze-dried kit for the labeling of tetrofosmin with technetium-99m has been developed. The kit contains lyophilized mixture of 0.320 mg tetrofosmin [6,9-bis(2-ethoxyethyl)-3,12-dioxa-6,9-diphosphatetradecane], 0.025 mg stannous chloride dihydrate, 5 mg sodium tartrate and 5 mg sodium hydrogen carbonate. The product contains no antimicrobial preservative. When 99mTc pertechnetate up to 6 mL saline containing 200 mCi is added to lyophilized mixture, a lipophilic, cationic 99mTc complex is formed, 99mTc-tetrofosmin. The performance of newly developed kit is compared with commercially available MYOVIEW kit for heart imaging. The patient studies show that the images of heart obtained by 99mTc-tetrofosmin prepared by new formulation are equally good to MYOVIEW.  相似文献   

20.
The bis(N-butyl dithiocarbamato) nitrido 99mTc complex [99mTcN(BDTC)2] (BDTC: N-butyl dithiocarbamato) has been synthesized through a ligand-exchange reaction. The two-step procedure consisted of an initial reaction of 99mTcO4 with succinic dihydrazide (SDH) in the presence of stannous chloride as reducing agent and propylenediamine tetraacetic acid (PDTA) as complexing agent, and subsequent addition of sodium salt of N-butyl dithiocarbamate. The radiochemical purity of the complex was over 90%, as measured by thin layer chromatography. No decomposition of the complex at room temperature was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The electrophoresis results showed the complex was neutral. Biodistribution in mice showed that the complex accumulated in the brain with high uptake. The brain/blood ratio was 1.58, 1.67 and 1.20 at 5, 30 and 60-minute post-injection, respectively, suggesting this compound would be a potential cerebral imaging agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号