首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical method is described for the determination of a broad range of emerging and priority pollutants, together with sewage molecular markers in environmental waters. The step-by-step study of the GC/MS analyses focuses on the effects of experimental variables using a large volume injection (LVI) technique [a programmed temperature-vaporising (PTV) inlet], the evaluation of a clean-up step using classical and newer sorbents (i.e. Al-N, Fl, NH2, PSA, Si, CN and DIOL), and the revision of how organic matter [i.e. humic acids (HA) content] affects method performance. Reproducibility and recoveries from spiked coastal water samples at different analyte concentrations (100, 250 and 500 ng L−1) as well as with different levels of spiked humic acids (2, 10 and 20 mg L−1) are reported indicating a good performance of the extraction procedure with low levels of HA (<10 mg L−1). The presence of HA is a critical parameter during the solid-phase extraction (SPE) procedures. Of the clean-up sorbents tested, CN and DIOL proved most efficient in cleaning-up the extracts with recoveries in the range of 66-77% and 100-114%, respectively for the selected analytes. Both GC/MS and PTV-GC/MS instrumental configurations were tested using final sewage effluents, riverine, estuarine and coastal water samples. However, limited applicability of the PTV inlet is reported for environmental applications, affording only a modest improvement in chromatographic signal-to-noise ratios.  相似文献   

2.
The analysis of pharmaceuticals and potential endocrine disruptors in the environment has rightly concentrated on their presence in wastewaters and possible contamination of receiving bodies, such as groundwaters. However, wastewater is increasingly being reused for irrigation and in order to fully understand the environmental fate of these compounds, reliable methods for their analysis in soil are required, of which there are relatively few available. This article reports a method for a range of acidic pharmaceuticals, carbamazepine, and endocrine disrupting compounds in soils with final analysis by gas chromatography-mass spectrometry. Two soil types (Phaeozom and Leptosol) and three fortification levels were used to validate the method. Recoveries of acidic pharmaceuticals varied between 62 and 102%, carbamazepine from 75 to 118%, and potential endocrine disruptors between 54 and 109%; most recoveries were between 75 and 95% and relative standard deviations were generally less than 10%. Detection limits were between 0.25 and 2.5 ng/g except for phthalates and 4-nonylphenols (25 ng/g). The method was used to analyze soils where untreated wastewaters have been used to irrigate crops for approximately 90 years. Concentrations of acidic pharmaceuticals in the soil were <1 ng/g and potential endocrine disruptors varied from below the limit of detection (estrone, 17β-estradiol, and 17α-ethinylestradiol) to 2079 ng/L (bis-diethylhexyl phthalate). This data indicated that despite the continuous application of the contaminants over many years, concentrations were generally lower than those expected to be contributed by a single irrigation event. Only carbamazepine, at concentrations of 6.48 ng/g (in Phaeozem) and 5.14 ng/g (in Leptosol), showed any evidence of persistence in the soils analyzed.  相似文献   

3.
The last two decades have witnessed growing scientific and public concerns over endocrine disrupting compounds (EDCs) that have the potential to alter the normal structure or functions of the endocrine system in wildlife and humans. In this study, the phenolic EDCs such as alkylphenol, chlorinated phenol and bisphenol A were considered. They are commonly found in wastewater discharges and in sewage treatment plant. In order to monitor the levels and seasonal variations of phenolic EDCs in various aquatic environments, a total of 15 water samples from the discharged effluent from sewage and wastewater treatment plants and river water were collected for 3 years. Ten environmental phenolic EDCs were determined by GC-MS and laser-induced fluorescence (LIF). GC-MS analysis revealed that most abundant phenolic EDCs were 4-n-heptylphenol, followed by nonlyphenol and bisphenol A during 2002-2003, while 4-t-butylphenol and 4-t-octylphenol were newly detected in aquatic environments in 2004.The category of phenolic EDCs showed similar fluorescence spectra and nearly equal fluorescence decay time. This makes it hard to distinguish each phenolic EDC from the EDCs mixture by LIF. Therefore, the results obtained from LIF analysis were expressed in terms of the fluorescence intensity of the total phenolic EDCs rather than that of the individual EDC. However, LIF monitoring and GC-MS analysis showed consistent result in that the river water samples had lower phenolic EDCs concentration compared to the effluent sample. This revealed a lower fluorescence intensity and the phenolic EDCs concentration in summer was lower than that in winter. For the validation of LIF monitoring for the phenolic EDCs, the correlation between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was obtained (R = 0.7379). This study supports the feasibility of the application of LIF into EDCs monitoring in aquatic systems.  相似文献   

4.
The method employing molecularly imprinted polymers for the extraction and clean up of endocrine‐disrupting compounds (estrogens, bisphenol A, and alkylphenols) from water and sediment is described. The identical extraction/clean‐up and LC‐MS/MS condition were used for the analysis of both types of samples. The method showed high recoveries ranging from 90 to 99% with excellent precision (intrabatch: 3.6–9.3%; interbatch: 5.6–11.4% for water; intrabatch: 4.3–8.5%; interbatch: 6.1–9.6% for sediment). The LOD was in the range of 0.7–1.9 ng/L and 0.3–0.6 ng/g for water and sediment, respectively. Overall extraction on molecularly imprinted polymers substantially enhanced sample clean‐up. The difference in efficiency of clean‐up was particularly pronounced when a large sample volume/weight was extracted and analyzed. Finally, the method was successfully applied for the analysis of 20 water and sediment samples.  相似文献   

5.
Tschmelak J  Proll G  Gauglitz G 《Talanta》2005,65(2):313-323
Certain contaminants at trace concentrations in surface waters can have dramatic effects on the hormonal system of organisms in the aquatic environment. Therefore, immunoanalytical methods at a very low limit of detection (LOD) and a low limit of quantification (LOQ) are becoming more and more important for environmental analysis and especially for monitoring drinking water quality. Environmental monitoring of antibiotics, hormones, endocrine disrupting chemicals, and pesticides in real water samples (e.g. surface, ground or drinking water) with difficult matrices places high demands on chemical analysis. Biosensors have suitable characteristics such as efficiency in allowing very fast, sensitive, and cost-effective detection. Here we describe an assay optimization process with a fully automated immunoassay for estrone which resulted in a LOD below 0.20 ng L−1 and a LOQ below 1.40 ng L−1. In contrast to common analytical methods such as GC-MS or HPLC-MS, the biosensor used requires no sample pre-treatment and pre-concentration. The very low validation parameters for estrone are the result of the continuous optimization of the immunoassay. The basis of our sensitive assay is the antibody with a high affinity constant towards estrone. During the optimization process, we reduced the amount of antibody per sample and improved the chip surface modification. Finally, this proceeding led to a calibration routine with an amount of antibody of only 3.0 ng per sample (sample volume: 1.0 mL). The reduction of the amount of antibody per sample results in better validation parameters (LOD, LOQ, and IC50), but this reduction leads to the current device-related limitation of the River Analyser (RIANA).For some endocrine disrupting compounds, no effect levels (NOELs) in the lower nanogram per liter range are reported. This defines the challenge, which analytical methods have to compete with and our RIANA instrument with its improved sensitivity for the detection of a single hormone in the lower nanogram per liter range is a powerful tool in aquatic analytics in addition to the common analytical methods.  相似文献   

6.
Magnetite nanoparticles incorporated into alginate beads and coated with a polypyrrole adsorbent were prepared (polypyrrole/Fe3O4/alginate bead) and used as an effective magnetic solid‐phase extraction sorbent for the extraction and enrichment of endocrine‐disrupting compounds (estriol, β‐estradiol and bisphenol A) in water samples. The determination of the extracted endocrine‐disrupting compounds was performed using high‐performance liquid chromatography with a fluorescence detector. The effect of various parameters on the extraction efficiency of endocrine disrupting compounds were investigated and optimized including the type and amount of sorbent, sample pH, extraction time, stirring speed, and desorption conditions. Under optimum conditions, the calibration curves were linear in the concentration range of 0.5–100.0 μg/L, and the limit of detection was 0.5 μg/L. The developed method showed a high extraction efficiency, the recoveries were in the range of 90.5 ± 4.1 to 98.2 ± 5.5%. The developed sorbent was easy to prepare, was cost‐effective, robust, and provided a good reproducibility (RSDs < 5%), and could be reused 16 times. The developed method was successfully applied for the determination of endocrine‐disrupting compounds in water samples.  相似文献   

7.
A large number of xenobiotics including pharmaceuticals and personal care products are continuously released into the environment. Effluents from sewage treatment plants are well known to be the major source for introduction of pharmaceuticals and personal care products into the aquatic system. In recent years, reliable methods have been established for residue analysis of these pollutants down to low ng/L levels. In this review, the different approaches to their trace determination are reviewed with special attention being paid to sample preparation procedures, state-of-the-art high-performance separation methods hyphenated with mass spectrometry, and immunochemical methods.  相似文献   

8.
9.
A commercially available thin film composite (TFC) polyamide (PA) nanofiltration (NF) membrane was chemically modified to improve its rejection capacity for selected organic micro-pollutants categorized as endocrine disrupting chemicals (EDCs) and pharmaceutically active compounds (PhACs): bisphenol-A (BPA), ibuprofen, and salicylic acid. The raw NF membrane was altered using the following modification sequence: graft polymerization (methacrylic acid (MA)-membrane); cross-linking of grafted polymer chains (ethylene diamine (ED)-membrane); and, substitution of functional groups (succinic acid (SA)-membrane). Attenuated total reflective Fourier transform infrared (ATR-FTIR) was used to verify each modification in the sequence: the formation of amide bonds; graft polymerization and cross-linking; and, increased carboxylic acids on the modified membrane. Based on zeta-potential and contact angle measurements, graft polymerization increased the negative charge and hydrophilicity of the raw membrane, while cross-linking replaced carboxylic acid with amide bonds, which made the modified membrane almost neutral at pH 6.5. The water fluxes of the ED- and SA-membranes were similar to that of the raw membrane; however, the water flux of the MA-membranes varied with polymerization time (the membrane polymerized for 15 min revealed ≥20% higher flux than the raw membrane). BPA rejection by the raw membrane was substantially improved from 74% to ≥95% after this series of modifications. However, the rejection capacity of the ED-membrane for ibuprofen and salicylic acid was slightly reduced compared with those of the MA-membrane, which was polymerized for 15 min, due to the lack of an electrical repulsion mechanism. The SA-membrane recovered its negative surface charge and showed a clear enhancement in the rejection of all pollutants.  相似文献   

10.
纳滤膜在水处理中的最新应用进展   总被引:2,自引:0,他引:2  
纳滤膜(NF)是新的分离膜品种,对溶质的截留性能介于超滤膜(UF)和反渗透膜(RO)之间。纳滤膜的特性是表面带有电荷并具有纳米级的微孔,能够去除高价离子和分子量大于200的溶解性的有机物。特殊的分离效果使纳滤技术单独或者和其它技术联用应用于水处理领域,主要包括:(1)饮用水制备和深度净化;(2)海水淡化;(3)废水处理,例如生活污水、垃圾渗滤液等等。本文综述了纳滤技术在上述水处理领域中的应用进展及现存问题。  相似文献   

11.
In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 μM and 4.5 μM, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 μM and 35 μM respectively, with an RSD% less than 5%.  相似文献   

12.
Among the various compounds considered as emerging pollutants, alkylphenolic surfactants, steroid sex hormones, and pharmaceuticals are of particular concern, both because of the volume of these substances used and because of their activity as endocrine disruptors or as causative agents of bacterial resistance, as is the case of antibiotics. Today, the technique of choice for analysis of these groups of substances is liquid-chromatography coupled to mass spectrometry (LC–MS) and tandem mass spectrometry (LC–MS–MS). In the last decades, this technique has experienced an impressive progress that has made possible the analysis of many environmental pollutants in a faster, more convenient, and more sensitive way, and, in some cases, the analysis of compounds that could not be determined before. This article reviews the LC–MS and LC–MS–MS methods published so far for the determination of alkylphenolic surfactants, steroid sex hormones and drugs in the aquatic environment. Practical considerations with regards to the analysis of these groups of substances by using different mass spectrometers (single quadrupole, ion trap and triple quadrupole instruments, etc.), interfaces and ionization and monitoring modes, are presented. Sample preparation aspects, with special focus on the application of advanced techniques, such as immunosorbents, restricted access materials and molecular imprinted materials, for extraction/purification of aquatic environmental samples and extracts are also discussed.  相似文献   

13.
Two GC-MS methods, based on the application of N,O-bis(trimethylsilyl)trifluoroacetamide-derivatization-GC-MS (selected-ion monitoring) and GC-MS-MS without derivatization, respectively, were optimised and applied to the determination of a group of five selected endocrine disrupting compounds (EDCs) in wastewaters. Both methods included solid-phase extraction with Oasis HLB cartridges allowing an enrichment factor for wastewater samples of 100-fold. The investigated EDCs were estrone, 17beta-estradiol, 17alpha-ethynylestradiol, 4-tert-octylphenol and bisphenol A. Results obtained from the validation studies yielded comparable results in both cases. Recoveries in spiked wastewaters at 50 ng/l were higher than 90% for all the compounds, except for 4-tert-octylphenol (75%). Repeatability and reproducibility were adequate, varying from 1.6 to 14%, except for estrone which reproducibility was 28% when the derivatization-GC-MS method was applied. Limits of detection calculated ranged from 2.5 to 27.5 ng/l with differences between both methods from 1.1 (estrone) to 10.4 (bisphenol A) times. Both methods were successfully applied to the analysis of the target compounds in sewage treatment plant influents and effluents. Traces of bisphenol A, 4-tert-octylphenol, estrone and 17beta-estradiol were detected at concentration levels ranging from 13.3 to 1105.2 ng/l.  相似文献   

14.
An overview of Toxicity Identification and Evaluation (TIE) procedures, used for the effect-based analysis of endocrine disrupting compounds (EDCs) in environmental samples, is presented. Future trends in advanced chemical analysis of EDCs and some emerging contaminants are outlined. The review also gives an overview of concentration levels found in environmental samples and discusses the correlation of calculated estrogenicity (based on chemical analysis of target EDCs) with that measured by various bioassays.  相似文献   

15.
A new analytical method was developed for the simultaneous determination of estrogenic compounds of natural (estradiol, estriol, estrone) and synthetic origin, both steroidal (ethinylestradiol, mestranol) and non-steroidal (benzophenone, bisphenol-A, diethylstilbestrol, octylphenol, nonylphenol, nonylphenol monoethoxylate carboxylate), in environmental aqueous samples by high-performance liquid chromatography coupled with ion trap-mass spectrometry via electrospray interface (HPLC-ESI-IT-MS). Quantitative MS detection was performed in the negative mode for all compounds except mestranol and benzophenone, which were detected under positive ion conditions. Very low method detection limits (MDLs), between 0.1 and 2.6?ng/L, were achieved in coastal lagoon water samples, while the developed solid-phase-extraction (SPE) procedure permitted simultaneous recovery of all analytes from spiked water samples with yields >70% (7–11 RSD%), except estriol and benzophenone, which were recovered with 60% (9 RSD%) and 50% (11 RSD%) yields, respectively. The proposed method was applied to the analysis of Venice (Italy) lagoon waters, where average concentrations of selected compounds in the 2.8–33?ng/L concentration range were found.  相似文献   

16.
In the present work we optimised the separation of battery of key UV non-transparent low-molecular-mass compounds having possible endocrine disrupting compounds (EDCs) activity or which may be used as the endocrine effect biomarkers. Simple optimization strategy was based on strong temperature effect that is driven by electrostatic interactions between macrocyclic mobile phase additives like cyclodextrins and eluted components of interest under C18 stationary phase and acetonitrile/water mobile phase conditions. Particularly, the effect of temperature involving native β-cyclodextrin and its hydroxypropyl derivative to improve separation of number of natural (d-equilenin, equilin, estetrol, estriol, estrone, 17β-estradiol, 17α-hydroxyprogesterone, 20α-hydroxyprogesterone, cortisol, cortisone, progesterone, testosterone, tetrahydrocortisol and tetrahydrocortisone) and artificial steroids (ethynylestradiol, norgestrel isomers, medroxyprogesterone, mestranol, methyltestosterone, norethindrone, 17α-estradiol) as well as non-steroidal compounds (diethylstilbesterol, bisphenol A, 4-tert-butylphenol, dimethyl phthalate, dibutyl phthalate and dioctyl phthalate) was investigated. It has been found that successful isocratic separation of 27 chemicals can be achieved using acetonitrile/water eluents modified with β-cyclodextrin or hydroxypropyl-β-cyclodextrin at concentration of 10 mM and temperature of 47 °C. Separation protocol is simple, reliable, direct and non-radioactive and may be easily adapted for rapid separation and quantification of wide range of given steroids and related EDCs in environmental samples, particularly those that are characterised by unstable biological matrix and components of interest load.  相似文献   

17.
Continuous disposal of endocrine-disrupting compounds (EDCs) into the environment can lead to serious human health problems and can affect plants and aquatic organisms. The determination of EDCs in water has become an increasingly important activity due to our increased knowledge about their toxicities, even at low concentration. The EDCs in water samples from the reclaimed water plant of Tianjin, northern China, were identified by gas chromatography (GC)–mass spectrometry (MS). Important and contrasting EDCs including estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-tert-octylphenol (OP), 4-nonylphenol (NP), bisphenol A (BPA), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl)phthalate (DEHP) were selected as the target compounds. Concentrations of steroid hormones, alkylphenolic compounds and phthalates ranged from below the limit of detection (LOD) to 8.1 ng L−1, from <LOD to 14.2 ng L−1, and from 1.00 μg L−1 to 23.8 μg L−1, respectively. The average removal efficiencies for target EDCs varied from 30% to 82%. These results indicate that environmental endocrine disrupting compounds are not completely removed during reclaimed water treatment and may be carried over into the general aquatic environment.  相似文献   

18.
Online preconcentration using electrokinetic supercharging (EKS) was proposed to enhance the sensitivity of separation for endocrine disrupting chemical (methylparaben (MP)) and phenolic pollutants (2‐nitrophenol (NP) and 4‐chlorophenol (CP)) in water sample. Important EKS and separation conditions such as the concentration of BGE; the choice of terminating electrolyte (TE); and the injection time of leading electrolyte (LE), sample, and TE were optimized. The optimum EKS‐CE conditions were as follows: BGE comprising of 12 mM sodium tetraborate pH 10.1, 100 mM sodium chloride as LE hydrodynamically injected at 50 mbar for 30 s, electrokinetic injection (EKI) of sample at –3 kV for 200 s, and 100 mM CHES as TE hydrodynamically injected at 50 mbar for 40 s. The separation was conducted at negative polarity mode and UV detection at 214 nm. Under these conditions, the sensitivity of analytes was enhanced from 100‐ to 737‐fold as compared to normal CZE with hydrodynamic injection, giving LOD of 4.89, 5.29, and 53 μg/L for MP, NP and CP, respectively. The LODs were adequate for the analysis of NP and CP in environmental water sample having concentration at or lower than their maximum admissible concentration limit (240 and 2000 μg/L for NP and CP). The LOD of MP can be suitable for the analysis of MP exists at mid‐microgram per liter level, even though the LOD was slightly higher than the concentration usually found in water samples (from ng/L to 1 μg/L). The method repeatabilities (%RSD) were in the range of 1.07–2.39% (migration time) and 8.28–14.0% (peak area).  相似文献   

19.
Analytical methods have been developed for simultaneous determination of six different pharmaceuticals and personal care products (PPCPs) (clofibric acid, ibuprofen, naproxen, ketoprofen, diclofenac, and triclosan), three endocrine disrupting compounds (EDCs) (4-tert-octylphenol, 4-n-nonylphenol, and bisphenol A (BPA)) and one estrogenic compound (estrone) in soil matrix. The soils were extracted by different solvents with the help of an ultrasonic treatment at 42 kHz, followed by a solid phase extraction (SPE) as a cleanup procedure. The purified extracts were derivatized with N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and then analyzed by GC-MSD (SIM mode). The method was evaluated by testing the following variables: initial spiking levels, extraction solvents, solvent volumes, and soil types (sandy and clay soils). For 5 g of soil, four successive extraction steps with the mixture of acetone-ethyl acetate provided satisfactory recoveries. In the sandy soil, the recoveries of all the compounds were from 63.8 to 110.7% for the spiking level of 100 ng/g dry soil, and from 52.2 to 108.2% for 5 ng/g dry soil, respectively. Result was similar for the clay soil. The precision across all recoveries was high, suggesting that this method has a good reproducibility. The method was successfully employed to soil samples collected from a golf course irrigated with reclaimed wastewater in southern California, and resulted in the detection of clofibric acid, ibuprofen, naproxen, triclosan, bisphenol A, and estrone at ng per gram dry weight concentration levels. The method is robust and simple, and provides straightforward analyses of these current-emerging trace organic pollutants in solid matrices.  相似文献   

20.
The interaction between endocrine disrupting chemicals (EDCs) and liposome clusters was investigated using UV-vis spectroscopy and observed by microscope. Since liposome clusters are composed of small unilamellar liposomes and membrane proteins, they are regarded as a model of plasma membranes. The size of each cluster was 10microm in diameter. UV-vis spectroscopy of liposome clusters showed an apparent absorption at 300nm which was affected by the interaction with EDCs. Four EDCs caused an alteration in absorption in a concentration-dependence manner between 0.1 and 10ppm (i.e. 0.1-10mg/l). Microscopic observation showed that the effect was caused by the degradation of liposome clusters while degradation was induced by the interaction; liposome was broken down by EDCs. This report suggests that the liposome cluster can be applied for universal detection of EDCs based on the interaction between a plasma membrane model and EDCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号