首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
50~110 nm波段高反射率多层膜的设计与制备   总被引:1,自引:0,他引:1  
阐述了50~110 nm强吸收波段亚四分之一波长多层膜的设计方法.这种膜系是由强吸收材料叠加而成,每层膜光学厚度小于四分之一个波长.与常规周期多层膜相比,这种膜系更适用于提高强吸收波段的反射率.利用该方法设计了50 nm处高反射多层膜,并以此为初始条件通过Levenberg-Marquart优化方法完成了50~110 nm强吸收波段宽带高反射率Si/W/Co多层膜的设计,其平均反射率达到45%.采用直流磁控溅射方法制备了Si/W/Co多层膜,用X射线衍射仪(XRD)对膜层结构进行了测试,测试结果表明制作出的多层膜结构与设计结构基本相符.  相似文献   

2.
为研制极紫外波段窄带多层膜反射镜,采用低原子序数材料组合设计了30.4 nm波长处Mg/SiC,Si/SiC,Si/B4C和Si/C多层膜反射镜,并与极紫外波段传统的Mo/Si多层膜反射镜进行对比。采用直流磁控溅射技术制备了这些多层膜,在国家同步辐射实验室辐射与计量光束线完成了多层膜反射率测量,测量结果表明:Mg/SiC多层膜的带宽最小,为1.44 nm,且反射率最高,为44%;而Mo/Si多层膜的反射率仅为24%,带宽为3.11 nm。实验结果证明了采用低原子序数材料组成的多层膜的带宽要比常规多层膜窄,该方法可以应用于极紫外波段高分辨研究。  相似文献   

3.
磁控溅射制备横向梯度分布的Mo/Si周期多层膜   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用磁控溅射方法在Si基板上镀制了横向梯度分布的Mo/Si周期多层膜。以X射线掠入射反射测量了横向梯度多层膜的膜系结构,在基板65 mm长度范围内,多层膜周期从8.21 nm线性减小到6.57 nm,周期梯度为0.03 nm/mm。国家同步辐射实验室反射率计的反射率测试结果表明:该横向梯度分布周期多层膜上不同位置,能反射在13.3~15.9 nm波段范围内不同波长的极紫外光,反射率为60%~65%。  相似文献   

4.
祝文秀  金春水  匡尚奇  喻波 《光学学报》2012,32(10):1031002-294
极紫外光刻是实现22nm技术节点的候选技术。极紫外光刻使用的是波长为13.5nm的极紫外光,但在160~240nm波段,极紫外光刻中的激光等离子体光源光谱强度、光刻胶敏感度以及多层膜的反射率均比较高,光刻胶在此波段的曝光会降低光刻系统的光刻质量。从理论和实验两方面验证了在传统Mo/Si多层膜上镀制SiC单层膜可对极紫外光刻中的带外波段进行有效抑制。通过使用X射线衍射仪、椭偏仪以及真空紫外(VUV)分光光度计来确定薄膜厚度、薄膜的光学常数以及多层膜的反射率,设计并制备了[Mo/Si]40SiC多层膜。结果表明,在极紫外波段的反射率减少5%的前提下,带外波段的反射率减少到原来的1/5。  相似文献   

5.
为满足同步辐射装置中X射线单色器的需求,在直线式磁控溅射设备上制备了W/Si和Ru/C双通道多层膜反射镜。制备的W/Si多层膜和Ru/C多层膜的周期厚度均为3 nm,平均界面宽度分别为0.30 nm和0.32 nm。在320 mm长度范围和20 mm宽度范围内,W/Si多层膜膜厚误差的均方根值分别为0.30%和0.19%,Ru/C多层膜膜厚误差的均方根值分别为0.39%和0.20%。对制备的样品进行了表面形貌测试和非镜面散射测试,对比了W/Si多层膜和Ru/C多层膜的表面和界面粗糙度大小。硬X射线反射率测试结果表明,W/Si多层膜和Ru/C多层膜在8.04 keV能量点处的一级布拉格峰测试反射率分别为63%和62%,角分辨率均为2.6%。基于以上研究,在尺寸为350 mm×60 mm的高精度Si平面镜表面镀制了W/Si和Ru/C双通道多层膜,并且其被成功应用于上海同步辐射光源线站中。  相似文献   

6.
用直流磁控溅射法结合掩模板控制膜厚的方法在Si衬底上制备了工作于6.8~11.0nm波段的[Mo/B_4C]60横向梯度多层膜。利用X射线掠入射反射测试以及同步辐射反射率测试对梯度多层膜的结构及性能进行了测试。X射线掠入射反射测试结果表明,多层膜周期厚度沿着长轴方向从4.39nm逐渐增加到7.82nm,周期厚度平均梯度为0.054nm/mm。对横向梯度多层膜沿长轴方向每隔5mm进行了一次同步辐射反射率测试,结果显示,横向梯度多层膜在45°入射角下的反射率约为10%,反射峰的半高全宽介于0.13nm到0.31nm之间。  相似文献   

7.
中心波长为13.9nm的正入射Mo/Si多层膜   总被引:1,自引:0,他引:1  
用由铜靶激光等离子体光源等组成的反射率计对自行设计的周期厚度为7.14nm的120层Mo/Si多层膜进行极紫外(EUV)波段反射率测量。由于多层膜层数增加所引起的吸收、膜层界面之间的扩散以及镀膜过程中的膜厚控制误差或表面被氧化(污染)等原因,正入射Mo/Si多层膜在13.9nm处的反射率低于理论计算值73.2%,最后用原子力显微镜(AFM)测量其表面粗糙度为σ=0.401nm。  相似文献   

8.
用直流磁控溅射法结合掩模板控制膜厚的方法在Si衬底上制备了工作于6.8~11.0 nm波段的[Mo/B4C]60横向梯度多层膜。利用X射线掠入射反射测试以及同步辐射反射率测试对梯度多层膜的结构及性能进行了测试。X射线掠入射反射测试结果表明,多层膜周期厚度沿着长轴方向从4.39 nm逐渐增加到7.82 nm,周期厚度平均梯度为0.054 nm/mm。对横向梯度多层膜沿长轴方向每隔5 mm进行了一次同步辐射反射率测试,结果显示,横向梯度多层膜在45°入射角下的反射率约为10%,反射峰的半高全宽介于0.13 nm到0.31 nm之间。  相似文献   

9.
采用直流磁控溅射技术制备了厚度约100 nm的W,WSi2,Si单层膜和周期约为20 nm,Si膜层厚度与周期的比值为0.5的W/Si,WSi2/Si周期多层膜.利用台阶仪对镀膜前后基底表面的面形进行了测试,计算并比较了不同膜系的应力值.结果表明:W单层膜表现出较大的压应力,而W/Si周期膜则表现为张应力.WSi2单层...  相似文献   

10.
张金帅  黄秋实  蒋励  齐润泽  杨洋  王风丽  张众  王占山 《物理学报》2016,65(8):86101-086101
W/Si多层膜反射镜在硬X射线天文望远镜中有重要应用. 为减小其应力对反射镜面形和望远镜分辨率的影响, 同时保证较高的反射率, 采用150, 175和200 ℃ 的低温退火工艺对采用磁控溅射镀制的W/Si周期多层膜进行后处理. 利用掠入射X射线反射测试和样品表面面形测试对退火前后W/Si多层膜的应力和结构进行表征. 结果表明, 在150 ℃ 退火3 h 后, 多层膜1级峰反射率和膜层结构几乎没有发生变化, 应力减少约27%; 在175 ℃ 退火3 h后, 多层膜膜层结构开始发生变化, 应力减少约50%; 在200 ℃退火3 h 后, 多层膜应力减小超过60%, 但1级布拉格峰反射率相对下降17%, 且膜层结构发生了较大变化. W, Si界面层的增大和相互扩散加剧是应力和反射率下降的主要原因.  相似文献   

11.
基于多层膜准单色覆盖50~1500 eV能谱的多能点发射光谱测量系统可获得聚龙一号装置Z-pinch等离子体X射线源的能谱结构和总能量等信息。考虑装置的条件,在13 nm处的多层膜需要工作在掠入射角60。常规的Mo/Si多层膜尽管反射率最高,但其带宽较大,不能满足多层膜准单色的要求。因此提出将Mo和C共同作为多层膜的吸收层材料与Si组成Si/Mo/C多层膜,可使反射率降低较小而带宽明显减小。采用磁控溅射方法制备了Si/Mo/C多层膜,其掠入射X射线反射测量表面多层膜的结构清晰完整,同步辐射工作条件下反射率测量,得到Si/Mo/C多层膜在13 nm处和掠入射角60时的反射率为56.5%,带宽为0.49 nm(3.7 eV)。  相似文献   

12.
为提高Mo/Si多层膜的稳定性与使用寿命,通过分析多层膜驻波电场的分布,对表面保护层及多层膜最上层材料的厚度进行优化设计,使优化后的反射率最高.计算表明,一定厚度的表面保护层总对应一个最优的最上层材料厚度.在13.36 nm波长,膜对数为50的Mo/Si多层膜10度入射的理论反射率为74.47%;当添加厚度为2.3 nm的Ru作为表面保护层,对应多层膜最上层Si的优化厚度为3.93 nm,其理论反射率为75.20%.设计结果表明,通过优化设计表面保护层,可以提高多层膜稳定性,改善多层膜性能.  相似文献   

13.
波长30.4 nm的He-II谱线是极紫外天文观测中最重要的谱线之一,空间极紫外太阳观测光学系统需要采用多层膜作为反射元件。为此研究了SiC/Mg、B4C/Mg、C/Mg、C/Al、Mo/Si、B4C/Si、SiC/Si、C/Si、Sc/Si等材料组合的多层膜在该波长处的反射性能。基于反射率最大与多层膜带宽最小的设计优化原则,选取了SiC/Mg作为膜系材料。采用直流磁控溅射技术制备了SiC/Mg多层膜,用X射线衍射仪测量了多层膜的周期厚度,用国家同步辐射计量站的反射率计测量了多层膜的反射率,在入射角12°时,实测30.4 nm处的反射率为38.0%。  相似文献   

14.
提高光通量的软X射线非周期多层膜的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
 在周期多层膜基础上,采用随机数方法找到适当的非周期膜系, 极大地提高了反射光通量,并给出了整体设计步骤。模拟计算结果表明非周期多层膜能扩展带宽和提高反射率积分值。在12.4~20.1nm波段内,最佳非周期多层膜与峰值在中心波长λ=16.25nm处 的周期多层膜相比,理论积分反射率提高了75%。多个多层膜组成系统的积分强度无明显改善。  相似文献   

15.
研究扩散屏障层对Mo/Si多层膜软X射线反射率影响的模拟   总被引:5,自引:5,他引:0  
在特定波长下,用四层结构模型模拟了Mo/Si多层膜的软X射线反射率.研究了扩散屏障层dMo-on-Si和dSi-on-Mo对Mo/Si多层膜软X射线反射率的影响.研究发现,扩散屏障层并不总是损害Mo/Si多层膜的光学性能,通过合理设计dMo-on-Si和dSi-on-Mo厚度,增加dMo-on-Si与dSi-on-Mo的比值,也能提高多层膜的软X射线反射率.  相似文献   

16.
针对利用高次谐波获取亚飞秒脉冲的实验需求,设计制备了啁啾为-2 800 as2的啁啾Mo/Si多层膜反射镜.数值计算表明,采用所设计的啁啾多层膜反射镜可以获得86 as的脉冲.通过直流磁控溅射方法实现了Mo/Si多层膜样品的制备.在合肥同步辐射上进行了多层膜反射率的测量,在所设计的工作波长内,多层膜的平均反射率为5.6±2.3%.在考虑最上层Si的氧化作用后,对测量曲线进行拟合,得到的反射率曲线和膜层厚度分布分别与测试曲线和设计结果相吻合.  相似文献   

17.
提出了一种基于实数编码量子进化算法(RQEA)的宽角度极紫外(EUV)多层膜理论膜系的设计方法。采用基于实数编码的遗传算法(RGA)和RQEA对宽角度Mo/Si多层膜进行了理论设计和分析,发现RQEA具有种群规模小、搜索效率高和求解精度高的明显优势,体现出RQEA在光学薄膜设计领域的潜在应用价值。同时,设计出入射光波长为13.5nm、在入射角0°~18°范围内反射率可达50%的宽反射带Mo/Si多层膜。  相似文献   

18.
 研究了极紫外波段的双功能光学元件。采用周期膜叠加的思想,运用遗传方法优化设计了在19.5 nm处高反,在30.4 nm处抑制的双功能多层膜。采用磁控溅射技术制备了多层膜,利用X射线衍射仪测试了多层膜的结构,在国家同步辐射实验室测试了双功能多层膜的反射特性。结果表明:制备出的双功能膜性能与设计相符,在入射角13°,19.5 nm处的反射率达到33.3%,接近传统的19.5 nm周期高反膜的反射率,并且在30.4 nm附近将反射率由1.1%降到9.6×10-4。  相似文献   

19.
介绍了在极紫外波段,利用帽层材料来减少多层膜反射镜因外部环境干扰而造成的反射率降低,使多层膜光学元件能够长时间稳定工作.计算了在139nm波长处Mo/Si极紫外多层膜反射镜在表面镀制不同帽层材料时的理论最大反射率,利用单纯形调优法,对帽层和多层膜的周期厚度进行优化,同时把分层理论用于多层膜帽层优化,可使多层膜的反射率得到进一步提高.分析了在加入帽层前后多层膜外层电场强度的分布变化情况. 关键词: 多层膜 反射率 帽层 极紫外  相似文献   

20.
利用传输矩阵法设计并优化了用于光催化领域的TiO_2与一维光量子阱的复合结构,并分析了ZnS/SiO_2多层膜量子阱结构的透射特性.通过调节一系列的结构参数,在TiO_2光吸收波段(329.23 nm~482.71 nm)得到一个较宽的高反射率带隙,并且在吸收边附近(380 nm左右)得到了一个反射率高于93%的慢光子效应区.通过增加光线与TiO_2的作用时间和路径来提高光催化效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号