首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The local structure of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution was investigated by U-L(3) and Th-L(3) EXAFS spectroscopy for total sulfate concentrations 0.05 < or = [SO(4)(2-)] < or = 3 M and 1.0 < or = pH < or = 2.6. The sulfate coordination was derived from U-S and Th-S distances and coordination numbers. The spectroscopic results were combined with thermodynamic speciation and density functional theory (DFT) calculations. In equimolar [SO(4)(2-)]/[UO(2)(2+)] solution, a U-S distance of 3.57 +/- 0.02 Angstrom suggests monodentate coordination, in line with UO(2)SO(4)(aq) as the dominant species. With increasing [SO(4)(2-)]/[UO(2)(2+)] ratio, an additional U-S distance of 3.11 +/- 0.02 Angstrom appears, suggesting bidentate coordination in line with the predominance of the UO(2)(SO(4))(2)(2-) species. The sulfate coordination of Th(IV) and U(IV) was investigated at [SO(4)(2-)]/[M(IV)] ratios > or = 8. The Th(IV) sulfato complex comprises both, monodentate and bidentate coordination, with Th-S distances of 3.81 +/- 0.02 and 3.14 +/- 0.02 Angstrom, respectively. A similar coordination is obtained for U(IV) sulfato complexes at pH 1 with monodentate and bidentate U-S distances of 3.67 +/- 0.02 and 3.08 +/- 0.02 Angstrom, respectively. By increasing the pH value to 2, a U(IV) sulfate precipitates. This precipitate shows only a U-S distance of 3.67 +/- 0.02 Angstrom in line with a monodentate linkage between U(IV) and sulfate. Previous controversially discussed observations of either monodentate or bidentate sulfate coordination in aqueous solutions can now be explained by differences of the [SO(4)(2-)]/[M] ratio. At low [SO(4)(2-)]/[M] ratios, the monodentate coordination prevails, and bidentate coordination becomes important only at higher ratios.  相似文献   

2.
Red and yellow dichroistic crystals of a vanadium(V) compound, potassium (mu-oxo, di-mu-sulfato)bis(oxodisulfatovanadate), K(8)(VO)(2)O(SO(4))(6), have been obtained from the ternary catalytic model melt system K(2)S(2)O(7)[bond]K(2)SO(4)[bond]V(2)O(5). By slow cooling of the melt from 420 to 355 degrees C, crystal growth occurred, using solid V(2)O(5) crystals present in the melt as nucleation promoter. The compound crystallizes in the monoclinic space group P2(l) with a = 13.60(9) A, b = 13.93(9) A, c = 14.05(9) A, beta = 90.286(10) degrees, and Z = 2. It contains two VO(6) octahedra linked together by a mu-oxo and two mu-sulfato bridges. Furthermore, each octahedron has two monodentate sulfate ligands, making the dimeric entity coordinatively saturated. IR spectroscopy shows bands arising from V[bond]O[bond]V and V[double bond]O stretches as well as splitting of sulfate bands due to the different degrees of freedom present for different conformations of sulfate ligands. The coordination of vanadium in K(8)(VO)(2)O(SO(4))(6) is discussed in relation to the reaction mechanism of SO(2) oxidation catalysis.  相似文献   

3.
The reaction of [MCl2(NCMe)2] (M = Pd or Pt) with 2 molar equiv of MeC(CH2ER)3 (E = Se, R = Me; E = Te, R = Me or Ph) and 2 molar equiv of TlPF6 affords the bis ligand complexes [M(MeC(CH2ER)3)2][PF6]2. The crystal structure of [Pt(MeC(CH2SeMe)3)2][PF6]2 (C16H36F12P2PtSe6, a = 12.272(10) A, b = 18.563(9) A, c = 15.285(7) A, beta = 113.18(3) degrees, monoclinic, P2(1)/n, Z = 4) confirms distorted square planar Se4 coordination at Pt(II), derived from two bidentate tripod selenoethers with the remaining arm not coordinated and directed away from the metal center. Solution NMR studies indicate that these species are fluxional and that the telluroether complexes are rather unstable in solution. The octahedral bis tripod complexes [Ru(MeC(CH2SMe)3)2][CF3-SO3]2 and [Ru(MeC(CH2TePh)3)2][CF3SO3]2 are obtained from [Ru(dmf)6][CF3SO3]3 and tripod ligand in EtOH solution. The thioether complex (C18H36F6O6RuS8, a = 8.658(3) A, b = 11.533(3) A, c = 8.659(2) A, alpha = 108.33(2) degrees, beta = 91.53(3) degrees, gamma = 106.01(2) degrees, triclinic, P1, Z = 1) is isostructural with its selenoether analogue, involving two facially coordinated trithioether ligands in the syn configuration. NMR spectroscopy confirms that this configuration is retained in solution for all of the bis tripod Ru(II) complexes. These low-spin d6 complexes show unusually high ligand field splittings. The hexaselenoether Rh(III) complex [Rh(MeC(CH2SeMe)3)2][PF6]3 was obtained by treatment of [Rh(H2O)6]3+ with 2 molar equiv of MeC(CH2SeMe)3 in aqueous MeOH in the presence of excess PF6- anion, while the iridium(III) analogue [Ir(MeC(CH2SeMe)3)2][PF6]3 was obtained via the reaction of the Ir(I) precursor [IrCl(C8H14)2]2 with the selenoether tripod in MeOH/aqueous HBF4. NMR studies reveal different invertomers in solution for both the Rh and Ir species. The Cu(I) complexes [Cu(MeC(CH2ER)3)2]PF6 were obtained from [Cu(NCMe)4]PF6 and tripod ligand in CH2Cl2 solution. The corresponding Ag(I) species [Ag(MeC(CH2TeR)3)2]CF3SO3 (R = Me or Ph) were obtained from Ag[CF3SO3] and tripod telluroether. In contrast, a similar reaction with 2 molar equiv of MeC(CH2SeMe)3 afforded only the 1:1 complex [Ag(MeC(CH2SeMe)3)]CF3SO3. The structure of this species (C9H18AgF3O3SSe3, a = 8.120(3) A, b = 15.374(3) A, c = 14.071(2) A, beta = 93.86(2) degrees, monoclinic, P2(1)/n, Z = 4) reveals a distorted trigonal planar geometry at Ag(I) derived from one bidentate selenoether and one monodentate selenoether. These units are then linked to adjacent Ag(I) ions to give a one-dimensional linear chain cation.  相似文献   

4.
The coordination of the U(IV) and U(VI) ions as a function of the chloride concentration in aqueous solution has been studied by U L(III)-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The oxidation state of uranium was changed in situ using a gastight spectroelectrochemical cell, specifically designed for the safe use with radioactive solutions. For U(VI) we observed the complexes UO2(H2O)5(2+), UO2(H2O)4Cl+, UO2(H2O)3Cl2(0), and UO2(H2O)2Cl3- with [Cl-] increasing from 0 to 9 M, and for U(IV) we observed the complexes U(H2O)9(4+), U(H2O)8Cl3+, U(H2O)(6-7)Cl2(2+), and U(H2O)5Cl3+. The distances in the U(VI) coordination sphere are U-Oax = 1.76+/-0.02 A, Oeq = 2.41 +/- 0.02 A, and U-Cl = 2.71 +/- 0.02 A; the distances in the U(IV) coordination sphere are U-O = 2.41 +/- 0.02 A and U-Cl = 2.71 +/- 0.02 A.  相似文献   

5.
A series of novel uranium sulfates containing organic structure directing cations has been synthesized from amine sulfate precursors under hydrothermal conditions. The amine sulfates act as a soluble source of the protonated amines and sulfate ions at low temperature and provide a reaction pathway in which no amine decomposition is observed. The protonated amines act as both space fillers and hydrogen-bond donors in the three-dimensional structure. The factors governing the formation of the observed hydrogen-bonding networks were probed through the use of bond valence sums, which allow the quantification of residual negative charge and determination of the relative nucleophilicity of each oxide ligand. The hydrogen bonding in these new compounds is dependent upon two factors. First, the oxide ligands with the highest nucleophilicities are preferential acceptors with respect to their less nucleophilic counterparts. Second, geometric constraints that result from the formation of multiple hydrogen bonds from a single ammonium center can dictate the donation to oxides with smaller negative charges. Crystal data for [N4C6H12][SO4]2 x 2H2O, a = 7.2651(2) A, b = 7.3012(2) A, c = 8.3877(3) A, alpha = 90.260(1) degrees, beta = 100.323(1) degrees, gamma = 113.0294(15) degrees, triclinic, P-1 (No. 2), Z = 1; for [N4C6H22][UO2(H2O)(SO4)2]2 x 6H2O, a = 6.7318(1) A, b = 9.2975(1) A, c = 13.1457(3) A, alpha = 72.3395(6) degrees, beta = 89.1401(7) degrees, gamma = 70.0267(12) degrees, triclinic, P-1 (No. 2), Z = 1; for [N4C6H22][UO2(SO4)2)2, a = 9.3771(2) A, b = 12.9523(3) A, c = 18.9065(6) A, orthorhombic, Pbca (No. 61), Z = 4; for [N5C8H28]2[(UO2)5(H2O)5(SO4)10] x H2O, a = 7.76380(5) A, b = 14.16890(5) A, c = 56.46930(5) A, orthorhombic, Pbnm (No. 62), Z = 4.  相似文献   

6.
The formation constants of UO2SO4 (aq), UO2(SO4)2(2-), and UO2(SO4)3(4-) were measured in aqueous solutions from 10 to 75 degrees C by time-resolved laser-induced fluorescence spectroscopy (TRLFS). A constant enthalpy of reaction approach was satisfactorily used to fit the thermodynamic parameters of stepwise complex formation reactions in a 0.1 M Na(+) ionic medium: log 10 K 1(25 degrees C) = 2.45 +/- 0.05, Delta r H1 = 29.1 +/- 4.0 kJ x mol(-1), log10 K2(25 degrees C) = 1.03 +/- 0.04, and Delta r H2 = 16.6 +/- 4.5 kJ x mol(-1). While the enthalpy of the UO2(SO4)2(2-) formation reaction is in good agreement with calorimetric data, that for UO2SO4 (aq) is higher than other values by a few kilojoules per mole. Incomplete knowledge of the speciation may have led to an underestimation of Delta r H1 in previous calorimetric studies. In fact, one of the published calorimetric determinations of Delta r H1 is here supported by the TRLFS results only when reinterpreted with a more correct equilibrium constant value, which shifts the fitted Delta r H1 value up by 9 kJ x mol(-1). UO2(SO 4) 3 (4-) was evidenced in a 3 M Na (+) ionic medium: log10 K3(25 degrees C) = 0.76 +/- 0.20 and Delta r H3 = 11 +/- 8 kJ x mol(-1) were obtained. The fluorescence features of the sulfate complexes were observed to depend on the ionic conditions. Changes in the coordination mode (mono- and bidentate) of the sulfate ligands may explain these observations, in line with recent structural data.  相似文献   

7.
In the aqueous chemistry of molybdenum(IV) and tungsten(IV), trinuclear, incomplete cubane-like, oxo and sulfido clusters of the type [M3E4]4+ (M = Mo, W; E = O, S) play a central role. We here describe how formato complexes of all these cluster cores can be prepared in high yields by crystallization from methanol-water or ethanol-water mixtures. Since potassium and ammonium formate are very soluble in these alcohol-water mixtures, high formate concentrations could be accomplished in the solutions from which the corresponding salts of cluster formato complexes crystallized. The [Mo3O4]4+ compounds could be synthesized without requiring the use of noncomplexing acids in the process. Some [M3E4]4+ compounds were characterized by single-crystal structure determinations. [NH4]3.20[K]0.80[H3O][Mo3O4(HCO2)8][HCO2].H2O was triclinic, space group P1 (No. 2) with a = 11.011(2) A, b = 13.310(2) A, c = 9.993(1) A, alpha = 106.817(7) degrees, beta = 91.651(9) degrees, gamma = 88.340(9) degrees, and two formula units per cell. [K]6[W3S4(HCO2)9][HCO2].2.27H2O.0.73CH3OH was monoclinic, space group C2/m (No. 12) with a = 19.605(6) A, b = 14.458(7) A, c = 13.627(5) A, beta = 118.94(2) degrees, and four formula units per cell. Generally, the nine coordination sites of [M3E4]4+ were occupied either by a mixture of monodentate and mu 2-bridging formato ligands or by monodentate formato ligands only. By dissolution in noncomplexing strong acid, all the formato complexes immediately hydrolyzed to form [M3E4(H2O)9]4+ aqua complexes. This allows, for example, high concentrations of [Mo3S4(H2O)9]4+ in CF3SO3H to be obtained and these solutions to be used for the synthesis of bimetallic clusters containing the cubane-like motif Mo3M'S4.  相似文献   

8.
A facile hydrothermal method was developed to synthesize boehmite nanorods with a length of 50-2000 nm, a diameter of 6-20 nm, and a preferential growth along [100] by treating the Al(OH)(3) gel in acidified sulfate solutions at 240 degrees C. Studies on the hydrothermal treatment of Al(OH)(3) gel in sulfate solutions showed that the morphology and the composition of the hydrothermal products were connected with the sulfate concentration and the pH of the hydrothermal solution. The aspect ratio of the boehmite nanorods increased to 300 as the initial H(2)SO(4) concentration increased to 0.043 mol x L(-1), whereas boehmite nanorods and (H(3)O)Al(3)(SO(4))(2)(OH)(6) cubic particles coexisted in the case of the initial H(2)SO(4) concentration > or = 0.054 mol x L (-1). Sole boehmite nanoflakes with a diameter of about 50 nm were formed under alkaline conditions (pH 10.5) despite the existence of the sulfate. The chemical and Raman analyses indicated that SO(4)(2-) in acidified solutions adsorbed on the boehmite surface via H-bonds. On the basis of the above results, the growth of boehmite along the [100] direction was attributed to the selective adsorption of SO(4) (2-) on the (010) and (001) planes of boehmite.  相似文献   

9.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

10.
Molecular dynamics methods were used to simulate UO(2)(OH)(2)(0) binding to pairs of oxo sites (O(S)) on three low-index planes of α-SiO(2) in contact with water. Differences in binding site distributions on the (001), (010) and (101) planes produced distinct sets of stable U inner-sphere species. Steric constraints prevented bidentate coordination to the (001) surface, resulting in a mononuclear monodentate complex, [UO(2)(OH)(2)(H(2)O)(n)O(S)] (90% for n=1 and 10% for n=2 over 5 ns production runs). Binuclear bidentate coordination, [UO(2)(OH)(2)(H(2)O)(n)(O(S))(2)], was however favored on the (010) (99% for n=0 and 1% for n=1) and the (101) (72% for n=0 and 28% for n=1) planes. These results underscore a predominant four-coordinated equatorial shell for U when complexed to the quartz/water interface. Potential of mean force calculations uncovered a diversity of metastable outer- and inner-sphere complexes at local energy minima up to ~0.4 nm from the surface. These calculations point to important differences in both energetic requirements and mechanisms for the approach of UO(2)(OH)(2)(0) to different quartz surfaces. Binding strengths are affected by binding site distribution, steric freedom, U hydration and OH orientation, and increase in the order (001) (3.7 kJ mol(-1)) < (101) (5.6 kJ mol(-1)) < (010) (6.5 kJ mol(-1)). A general binding mechanism involves (1) formation of monodentate outer-sphere complexes, (2) removal of oxo-bound waters, (3) formation of one (monodentate), then two (bidentate) direct U-O(S) bonds (inner-sphere), and (4) expulsion of excessive waters from the equatorial shell of U.  相似文献   

11.
Weakly coordinated [Cu(pcp)(H2O)n] complexes are formed in aqueous solution, at room temperature, by interaction of P,P'-diphenylmethylene diphosphinic acid (H2pcp) with copper(II) ions. However, heating of the solutions gives rise to the formation of two extended metal-oxygen networks of formulas [Cu(pcp)(H2O)2] x H2O, 1, and [Cu(pcp)(H2O)2], 2. In the presence of 2,2'-bipyridyl (bipy) the diamine derivative [Cu(pcp)(bipy)(H2O)], 4, has been isolated. Complex 1 easily loses water to form a monohydrated derivative [Cu(pcp)H2O], 3, whereas 2 is completely dehydrated after prolonged heating at 150 degrees C, under vacuum. The compounds 1 and 2 have substantially different solid-state structures as shown by X-ray powder diffraction spectra, IR spectra, and thermogravimetric analyses. Consistently, the two complexes cannot be directly interconverted and present different dehydration pathways. Rehydration of these materials in both cases allows quantitative formation of 1. X-ray analysis established that the structure of 1 consists of a corrugated two-dimensional layered polymeric array, where infinite zigzag chains of Cu centers and bridging phenylphosphinate ligands are linked together through strong hydrogen-bonding interactions; the structure of 4 consists of monodimensional polymers, where the hydrogen-bonding interactions play an essential bridging role in the extended architecture. In both structures the metal center displays a five-coordinate environment with approximate square pyramidal geometry, with the pcp ligand acting as bidentate and monodentate in 1 and solely as bidentate in 4. In 1 the coordination sphere is completed through water molecules; in 4, through water and diamine ligands. The thermogravimetric analyses of the complexes are compared with those of the related hybrids [M(pcp)(H2O)3] x H2O, where M = Mn, Co, or Ni, confirming that noncoordinated water molecules also play a basic role in determining the molecular packing.  相似文献   

12.
The influence of the metal size in the nuclearity of the complexes derived from the hydrazone ligand 2,6-bis(1-salicyloylhydrazonoethyl)pyridine [H(4)daps] has been investigated. We have synthesised a series of new complexes [M(H(x)daps)] x yH(2)O, (x = 2,3; y = 0-3) with M = Ag (1), Cd (2), Al (3), Sn (4) and Pb (6), using an electrochemical procedure. The crystal and molecular structures have been determined for the mononuclear complexes [Sn(H(2)daps)(H(2)O)(2)] x 4H(2)O (5) and [Pb(H(2)daps)(CN)][Et(4)N] (7). Complex is the first neutral Sn(II) complex derived from a pentadentate hydrazone Schiff base ligand. Complex shows the lead coordinated to the hydrazone donor set and a cyanide ligand, being the first reported complex with the lead atom coordinated to a monodentate cyanide group. Additionally, we have synthesised the lead complex using chemical conditions, in the presence of sodium cyanide which allowed us to isolate the neutral complex [Pb(H(2)daps)] (8). Evaporation of these mother liquors led the novel compound [Pb(Hdaphs)(CH(3)COO)] (9). Complex 9 shows the initial ligand hydrolysed in one of the imine bonds giving rise to a new tetradentate ligand [H(2)daphs] coordinated to the lead atom and a bidentate acetate group. Moreover, the solution behaviour of the complexes has been investigated by (1)H, (113)Cd, (117)Sn and (207)Pb NMR techniques. In particular multinuclear NMR has provided new useful data to correlate factors such as oxidation state, coordination number and nature of the kernel donor atoms due to the new coordination found in complexes 5 and 7. The comparative study of the structures of the complexes derived from this pentadentate [N(3)O(2)] hydrazone ligand let us to conclude that the metal size is a key factor to control the nuclearity of the complexes derived from the ligand [H(4)daps].  相似文献   

13.
The coordination chemistry of the oxadiazole-containing rigid bidentate ligands 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L2) and 2,5-bis(4-aminophenyl)-1,3,4-oxadiazole (L3) with inorganic Ag(I) salts has been investigated. Four new coordination polymers were prepared by solution reactions and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. [[Ag(L2)]SO3CF3]n (1)(triclinic, P1; a = 10.1231(7) A, b = 13.9340-(10) A, c = 13.9284(10) A, alpha = 116.7300(10) degrees, beta = 94.6890(10) degrees, gamma = 108.7540(10) degrees, Z = 4) was obtained by the combination of L2 with AgOTf in a CH2Cl2/CH3OH mixed-solvent system and features a unique one-dimensional elliptical macrocycle-containing chain motif. The approximate dimensions of the rings are ca. 22 x 11 A. [[Ag-(L2)](ClO4)(CH3OH)0.5(H2O)0.5]n (2) (triclinic, P1; a = 8.4894(5) A, b = 13.9092(8) A, c = 14.1596(8) A, alpha = 71.1410(10) degrees, beta = 77.3350(10) degrees, gamma = 81.5370(10) degrees, Z = 4) was generated from the reaction of L2 with AgClO4 in a H2O/CH3OH mixed-solvent system and consists of one-dimensional chains that are linked to each other by weak noncovalent pi-pi interactions into two-dimensional sheets. Uncoordinated ClO4-counterions and guest solvent molecules are located between the layers. [[Ag(L2)]NO3]n (3) was obtained by the combination of L2 with Ag(NO3)2 in a MeOH/H2O mixed-solvent system (triclinic, P1; a = 8.3155(6) A, b = 8.8521(6) A, c = 9.8070(7) A, alpha = 74.8420(10) degrees, beta = 77.2800(10) degrees, gamma = 68.6760(10) degrees, Z = 2). In the solid state, it exhibits an interesting pair of chains associated with C-H...O hydrogen bonds. [[Ag(L3)]SO3CF3]n (4) is generated from L3 and AgSO3CF3 in a CH2Cl2/MeOH mixed-solvent system and crystallizes in the unusual space group Pnnm, with a = 7.9341(4) A, b = 11.5500(5) A, c = 18.1157(8) A, and Z = 4. It adopts a novel three-dimensional structural motif in the solid state with big rhombic channels (ca. 15 x 10 A).  相似文献   

14.
New water-soluble bimetallic peroxo-tartrato complexes of niobium(V) and/or tantalum(V) have been prepared, characterized from the structural and spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Two new homometallic complexes, (gu)5[Nb2(O2)4(tart)(Htart)] x 4H2O (1a) and (gu)6[Ta2(O2)4(tart)2] x 4H2O (2a), and the corresponding heterometallic complex, (gu)5[NbTa(O2)4(tart)(Htart)] x 4H2O (3), have been obtained. The crystal structures of the homometallic compounds, (gu)5[Nb2(O2)4(tart)(Htart)] x 6H2O x 1H2O2 (1b) and (gu)6[Ta2(O2)4(tart)2] x 6H2O (2b), have been determined, showing, for both cases, two 8-fold-coordinated metal atoms, each surrounded by oxygen atoms belonging to two bidentate peroxides, two monodentate carboxylato, and two alkoxo groups from both bridging tartrato ligands. The coordination polyhedron around each metal atom is a dodecahedron. The thermal treatment of complexes 1a, 2a, and 3 in air at 700 or 800 degrees C, depending of the Ta content, provided Nb2O5, Ta2O5, and the solid solution TaNbO5, respectively. The thermal treatment of a 1:1 Nb/Ta molar ratio mixture of 1a and 2a has also been studied. BET and SEM measurements have been carried out and reveal these oxides possess relatively high specific surface areas and display a porous character. Comparison between the use of homo- and heterometallic precursors is discussed.  相似文献   

15.
A new family of ruthenium complexes of general formula [Ru(DIP)2(L2)]2+, where DIP = 4,7-diphenyl-1,10-phenanthroline, a bidentate ligand with an extended aromatic system, was prepared and fully characterized. When L is a monodentate ligand, the following complexes were obtained: L = CF3SO3(-1) (2), CH3CN (3), and MeOH (4). When L2 is a bidentate ligand, the compounds [Ru(DIP)2(Hcmbpy)][Cl]2 (5) and [Ru(DIP)2(H2dcbpy)][Cl]2 (6) were prepared (Hcmbpy = 4-carboxy-4'-methyl-2,2-bipyridine, H2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine). Complex [Ru(DIP)2(MeOH)2][OTf]2 (4) displayed a trans configuration of the DIP ligands, which is rare for octahedral complexes featuring DIP bidentate ligands. DFT calculations carried out on 4 showed that the cis isomer is more stable by 12.2 kcal/mol relative to the trans species. The solution behaviors of monocarboxylic complex [Ru(DIP)2(Hcmbpy)][Cl]2 (5) and dicarboxylic complex [Ru(DIP)2(H2dcbpy)][Cl]2 (6) were investigated by 1H NMR spectroscopy. VT-NMR, concentration dependence, and reaction with NaOD allowed us to suggest that aggregation of the cationic species in solution, especially for 6, originates mainly from hydrogen bonding interactions.  相似文献   

16.
Li MX  Miao ZX  Shao M  Liang SW  Zhu SR 《Inorganic chemistry》2008,47(11):4481-4489
Five new metal-organic frameworks based on 2,4,6-tris(4-pyridyl)-1,3,5-triazine (tpt) ligand have been hydrothermally synthesized. Reaction of tpt and AgNO 3 in an acidic solution at 180 degrees C yields {[Ag(Htpt)(NO3)]NO(3).4H2O}n (1).Ag(I) is trigonally coordinated by two pyridyl nitrogen and one nitrato oxygen to form a 1D zigzag chain. Reaction of tpt with CuSO4 affords {[Cu2(tpt)2(SO4)2(H2O)2].4H2O}n (2). Copper(II) is bonded to two pyridyl nitrogen, two sulfato oxygen, and two water oxygen atoms to form an elongated octahedral geometry. Each H2O ligand bridges two copper(II), whereas sulfate bridges copper(II) via micro-1,3 and micro-1,1 fashions. The copper(II)-sulfate-H2O2D layers are linked by bidentate tpt to form a 3D polymeric structure. Reaction of Cu(SO4)2, tpt, and 1,2,4,5-benzenetetracarboxylic acid (H4btec) in the presence of piperidine gives [Cu(tpt)(H2btec)1/2]n (3). Copper(I) is located in a trigonal-pyramidal coordination environment and coordinated by three pyridyl nitrogen of tpt in a plane, whereas a carboxylate oxygen is coordinated to the copper(I) axially. The tpt-Cu forms a layer, and the layers are linked through H 2btec2- to form a 2D double-layered coordination polymer. Replacing CuSO4 with ZnI2 in the synthesis gives {[Zn(tpt)(btec)1/2].H2O}n (4). Zinc(II) is in a distorted tetrahedral geometry and linked through bidentate tpt and exotetradentate btec4- to form a 2D coordination grid. Reaction of tpt with CuCN leads to the assembly of a 3D metal-organic framework [Cu3(CN)3(tpt)]n (5). Copper(I) is trigonally coordinated by one pyridyl nitrogen and two cyanides to form an intriguing honeycomb architecture. Luminescence study shows that 1, 3, 4, and 5 have blue fluorescence, which can be assigned to be ligand-centered emissions. Thermal analysis shows that all of these complexes are quite stable, and especially for 4, the framework is stable up to 430 degrees C.  相似文献   

17.
An H  Li Y  Wang E  Xiao D  Sun C  Xu L 《Inorganic chemistry》2005,44(17):6062-6070
Three unusual compounds based on polyoxometalate building blocks, [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2][Ag2IMo6O24(H2O)4] x 6.25H2O (1), [(H2O)4Na2(C6NO2H5)6Ag3][IMo6O24] x 6H2O (2), and (C6NO2H6)2[(C6NO2H5)2Ag][Cr(OH)6Mo6O18] x 4H2O (3), have been synthesized and characterized by elemental analysis; IR, XPS, and ESR spectroscopy; TG analysis; and single-crystal X-ray diffraction. Compound 1 is constructed from the cationic two-dimensional (2D) coordination polymer sheets which are constituted of [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2]3+ and anionic [Ag2IMo6O24(H2O)4]3- chains as pillars, forming a three-dimensional (3D) supramolecular framework via weak Ag-O interactions. Compound 2 is composed of the well-defined [IMo6O24]5- building blocks, which are linked through trinuclear Ag-pyridine-3-carboxylic acid, [(C6NO2H5)6Ag3]3+, fragments into a one-dimensional (1D) hybrid chain; adjacent chains are further connected by sodium cations to yield a novel 2D network. Compound 3 has a 1D chainlike structure constructed from [Cr(OH)6Mo6O18]3- building blocks and Ag-pyridine-4-carboxylic acid coordination units. The crystal data for these compounds are the following: 1, triclinic, P1, a = 13.280(3) A, b = 13.641(3) A, c = 16.356(3) A, alpha = 89.68(3) degrees, beta = 88.31(3) degrees, gamma = 75.87(3) degrees, Z = 2; 2, triclinic, P1, a = 11.978(2) A, b = 12.008(2) A, c = 13.607(3) A, alpha = 116.14(3) degrees, beta = 108.85(3) degrees, gamma = 93.86(3) degrees, Z = 1; 3, triclinic, P1, a = 10.458(2) A, b = 10.644(2) A, c = 12.295(3) A, alpha = 97.40(3) degrees, beta = 112.38(3) degrees, gamma = 113.59(3) degrees, Z = 1.  相似文献   

18.
Yan Z  Day CS  Lachgar A 《Inorganic chemistry》2005,44(13):4499-4505
Three novel coordination polymers built of octahedral niobium cyanochloride clusters [Nb6Cl12(CN)6] and alkaline earth metal complexes have been prepared by reaction of aqueous solutions of (Me4N)4Nb6Cl18 and KCN with solutions of alkaline earth metal salts and 1,10-phenanthroline (phen) (1:2 molar ratio) in H2O/EtOH. The structures of [Ca(phen)2(H2O)3]2[Nb6Cl12(CN)6] x (phen)(EtOH)1.6 (1), [Ca(phen)2(H2O)2]2[Nb6Cl12(CN)6] x (phen)2 x 4H2O (2), and [Ba(phen)2(H2O)]2[Nb6Cl12(CN)6] (3) were determined by single-crystal X-ray diffraction. The three compounds were found to crystallize in the monoclinic system (space group Pn) with a = 11.5499(6) A, b = 17.5305(8) A, c = 21.784(1) A, beta = 100.877(1) degrees for 1; triclinic system (P1) with a = 12.609(4) A, b = 13.262(4) A, c = 16.645(5) A, alpha = 69.933(6) degrees, beta = 68.607(6) degrees, gamma = 63.522(5) degrees for 2; and a = 16.057(1) A, b = 16.063(1) A, c = 16.061(1) A, alpha = 86.830(1) degrees, beta = 64.380(1) degrees, gamma = 67.803(1) degrees for 3. Compounds 1 and 2 are built of cluster anions [Nb6Cl12(CN)6]4- trans-coordinated by two Ca2+ complexes via CN ligands to form neutral macromolecular units [Ca(phen)2(H2O)3]2[Nb6Cl12(CN)6] in 1 and [Ca(phen)2(H2O)2]2[Nb6Cl12(CN)6] in 2. Water of coordination and cyanide ligands form hydrogen bonded 3D and 2D frameworks for 1 and 2, respectively. The structure of 3 consists of [Nb6Cl12(CN)6]4- cluster anions and [Ba(phen)2(H2O)]2+ complexes linked through bridging cyanide ligands to form a neutral three-dimensional framework in which each barium complex is bound to three neighboring Nb6 clusters and each Nb6 cluster is linked to six Ba complexes.  相似文献   

19.
Treatment of HgCl(2) with 2-LiC(6)H(4)PPh(2) gives [Hg(2-C(6)H(4)PPh(2))(2)] (1), whose phosphorus atoms take up oxygen, sulfur, and borane to give the compounds [Hg[2-C(6)H(4)P(X)Ph(2)](2)] [ X = O (3), S (4), and BH(3) (5)], respectively. Compound 1 functions as a bidentate ligand of wide, variable bite angle that can span either cis or trans coordination sites in a planar complex. Representative complexes include [HgX(2) x 1] [X = Cl (6a), Br (6b)], cis-[PtX(2) x 1] [X = Cl (cis-7), Me (9), Ph (10)], and trans-[MX(2) x 1] [X = Cl, M = Pt (trans-7), Pd (8), Ni (11); X = NCS, M = Ni (13)] in which the central metal ions are in either tetrahedral (6a,b) or planar (7-11, 13) coordination. The trans disposition of 1 in complexes trans-7, 8, and 11 imposes close metal-mercury contacts [2.8339(7), 2.8797(8), and 2.756(8) A, respectively] that are suggestive of a donor-acceptor interaction, M --> Hg. Prolonged heating of 1 with [PtCl(2)(cod)] gives the binuclear cyclometalated complex [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)HgCl] (14) from which the salt [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)Hg]PF(6) (15) is derived by treatment with AgPF(6). In 14 and 15, the mu-C(6)H(4)PPh(2) groups adopt a head-to-tail arrangement, and the Pt-Hg separation in 14, 3.1335(5) A, is in the range expected for a weak metallophilic interaction. A similar arrangement of bridging groups is found in [Cl((n)Bu(3)P)Pd(mu-C(6)H(4)PPh(2))(2)HgCl] (16), which is formed by heating 1 with [PdCl(2)(P(n)()Bu(3))(2)]. Reaction of 1 with [Pd(dba)(2)] [dba = dibenzylideneacetone] at room temperature gives [Pd(1)(2)] (19) which, in air, forms a trigonal planar palladium(0) complex 20 containing bidentate 1 and the monodentate phosphine-phosphine oxide ligand [Hg(2-C(6)H(4)PPh(2))[2-C(6)H(4)P(O)Ph(2)]]. On heating, 19 eliminates Pd and Hg, and the C-C coupled product 2-Ph(2)PC(6)H(4)C(6)H(4)PPh(2)-2 (18) is formed by reductive elimination. In contrast, 1 reacts with platinum(0) complexes to give a bis(aryl)platinum(II) species formulated as [Pt(eta(1)-C-2-C(6)H(4)PPh(2))(eta(2)-2-C(6)H(4)PPh(2))(eta(1)-P-1)]. Crystal data are as follows. Compound 3: monoclinic, P2(1)/n, with a = 11.331(3) A, b = 9.381(2) A, c = 14.516 A, beta = 98.30(2) degrees, and Z = 2. Compound 6b x 2CH(2)Cl(2): triclinic, P macro 1, with a = 12.720(3) A, b = 13.154(3) A, c = 12.724(2) A, alpha = 92.01(2) degrees, beta = 109.19(2) degrees, gamma = 90.82(2) degrees, and Z = 2. Compound trans-7 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.805(3) A, b = 8.532(4) A, c = 23.076(2) A, and Z = 4. Compound 11 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.455(3) A, b = 8.496(5) A, c = 22.858(3) A, and Z = 4. Compound 14: monoclinic, P2(1)/c, with a = 13.150(3) A, b = 12.912(6) A, c = 26.724(2) A, beta = 94.09(1) degrees, and Z = 4. Compound 20 x C(6)H(5)CH(3).0.5CH(2)Cl(2): triclinic, P macro 1, with a = 13.199(1) A, b = 15.273(2) A, c = 17.850(1) A, alpha = 93.830(7), beta = 93.664(6), gamma = 104.378(7) degrees, and Z = 2.  相似文献   

20.
The structures of the hydrated lanthanoid(III) ions including lanthanum(III) have been characterized in aqueous solution and in the solid trifluoromethanesulfonate salts by extended X-ray absorption fine structure (EXAFS) spectroscopy. At ambient temperature the water oxygen atoms appear as a tricapped trigonal prism around the lanthanoid(III) ions in the solid nonaaqualanthanoid(III) trifluoromethanesulfonates. Water deficiency in the capping positions for the smallest ions starts at Ho and increases with increasing atomic number in the [Ln(H(2)O)(9-x)](CF(3)SO(3))(3) compounds with x=0.8 at Lu. The crystal structures of [Ho(H(2)O)(8.91)](CF(3)SO(3))(3) and [Lu(H(2)O)(8.2)](CF(3)SO(3))(3) were re-determined by X-ray crystallography at room temperature, and the latter also at 100 K after a phase-transition at about 190 K. The very similar Ln K- and L(3)-edge EXAFS spectra of each solid compound and its aqueous solution indicate indistinguishable structures of the hydrated lanthanoid(III) ions in aqueous solution and in the hydrated trifluoromethanesulfonate salt. The mean Ln--O bond lengths obtained from the EXAFS spectra for the largest ions, La-Nd, agree with estimates from the tabulated ionic radii for ninefold coordination but become shorter than expected starting at samarium. The deviation increases gradually with increasing atomic number, reaches the mean Ln-O bond length expected for eightfold coordination at Ho, and increases further for the smallest lanthanoid(III) ions, Er-Lu, which have an increasing water deficit. The low-temperature crystal structure of [Lu(H(2)O)(8.2)](CF(3)SO(3))(3) shows one strongly bound capping water molecule (Lu-O 2.395(4) A) and two more distant capping sites corresponding to Lu-O at 2.56(1) A, with occupancy factors of 0.58(1) and 0.59(1). There is no indication of a sudden change in hydration number, as proposed in the "gadolinium break" hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号