首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interelectronic angle density A(theta12) is the probability density function that the angle thetaij (0 < or = thetaij < or = pi) subtended by the vectors ri and rj of any two electrons i and j becomes theta12. For equivalent electrons in atoms, it is shown that the density A(theta12) in the Hartree-Fock theory is given by a simple polynomial of cos theta12. Detailed expressions are reported for all LS terms arising from s2, pN (N = 2-6), dN (N = 2-10), and f(N) (N = 2,12) electron configurations. With no modifications, the present results apply as well to the interelectronic angle density A(theta12) in momentum space, where theta12 is the angle between two electron momenta.  相似文献   

2.
Charge transfer properties of DNA depend strongly on the pi stack conformation. In the present paper, we identify conformations of homogeneous poly-{G}-poly-{C} stacks that should exhibit high charge mobility. Two different computational approaches were applied. First, we calculated the electronic coupling squared, V(2), between adjacent base pairs for all 1 ps snapshots extracted from 15 ns molecular dynamics trajectory of the duplex G(15). The average value of the coupling squared is found to be 0.0065 eV(2). Then we analyze the base-pair and step parameters of the configurations in which V(2) is at least an order of magnitude larger than . To obtain more consistent data, approximately 65,000 configurations of the (G:C)(2) stack were built using systematic screening of the step parameters shift, slide, and twist. We show that undertwisted structures (twist<20 degrees) are of special interest, because the pi stack conformations with strong electronic couplings are found for a wide range of slide and shift. Although effective hole transfer can also occur in configurations with twist=30 degrees and 35 degrees, large mutual displacements of neighboring base pairs are required for that. Overtwisted conformation (twist> or =38 degrees) seems to be of limited interest in the context of effective hole transfer. The results may be helpful in the search for DNA based elements for nanoelectronics.  相似文献   

3.
The shape and the density of a liquid drop on a planar solid surface, embedded in an inert gas at constant temperature and pressure, were examined on the basis of a microscopic density functional approach that accounts for the entropic (temperature-dependent) and energetic contributions to the free energy of the system. Integro-differential equations describing the profile and the density of a cylindrical (2D) drop were derived by the variational minimization of the Gibbs free energy with respect to both the drop profile and density under the assumption of uniform density. The equations were solved numerically using the constraint of a constant number of molecules N(l) per unit length of the drop. It was shown that for temperatures lower than a certain temperature Tw the free energy against density has generally two minima, representing a stable equilibrium state and a metastable one. One of those minima is located at a density corresponding to the density of a normal liquid, whereas the other one is located at a density comparable to the density of the surrounding inert gas. For this reason, the latter state of the drop cannot be stable. For T > Tw, the minimum corresponding to the liquid state disappears, and no drop can be formed on the surface. The temperature Tw depends on N(l) and the external pressure p and increases when N(l) and p increase. The true wetting angle theta0 that the drop profile makes with the solid surface depends on the parameters characterizing the microscopic interactions, the density, and the surface densities. If in the thermodynamically stable state absolute value(cos theta0) > 1, then no drop is formed on the surface. If in that state absolute value(cos theta0) < 1, then at any pressure the true contact angle decreases when the temperature increases and approaches Tw. However, theta0 does not reach a zero value for T < or = Tw but has for T = Tw a discontinuity from a finite to a zero value. The true contact angle also depends on the number of molecules in the drop and on the external pressure. For all considered values of N(l), p, and microscopic parameters of the intermolecular interactions, the density of the drop decreases with increasing temperature. The rate of decrease is constant for temperatures sufficiently far from Tw and increases when T approaches Tw. At a given temperature and pressure, the density of the drop decreases with decreasing N(l). For relatively large drops (N(l) approximately = 10(14)-10(20)), the rate of decrease is very small, whereas for small droplets (N(l) approximately = 10(12)) it becomes much larger.  相似文献   

4.
For the 102 atoms from He to Lr in their ground states, the average interelectronic angles <12> nl, n'l' between an electron in a subshellnl and another electron in a subshell n'l' are examined, where n and l are the principal and azimuthal quantum numbers, respectively. Theoretical study clarifies that <12> nl,n'l' are 90° precisely if ll' are even, while they are larger than 90° if ll' are odd. Numerical analysis of 3,275 subshell pairs with odd ll' of the 102 atoms shows that the increases in the total average interelectronic angles <12> from 90° are attributed predominantly to subshell pairs with n=n' and ll'=1.  相似文献   

5.
A new methodology which statistically determines substituent chemical shifts (SCS) and interaction factors of adjacent groups for use in the3C NMR spectroscopy of arenes is described. From a data base of 15,255 signals we have computed several hundred of thesestatistical SCS values (SSCS values), and interaction factors for many common pairs of groups. Some interaction factors for 1,2,3-substitution are also reported. When these SSCS values and interaction factors are used to predict the signal position they are found to give a correlation coefficient of predicted verses observed values of 0.994 with a standard deviation of 1.5 ppm.  相似文献   

6.
Surfaces containing 4 x 8 x 40 microm staggered rhombus posts were hydrophobized using two methods. One, using a dimethyldichlorosilane reaction in the vapor phase, introduces a smooth modified layer, and the other, a solution reaction using methyltrichlorosilane, imparts a second (nanoscopic) length scale of topography. The smooth modified surface exhibits contact angles of thetaA/thetaR = 176 degrees /156 degrees . Arguments are made that the pinning of the receding contact line by the post tops (with thetaA/thetaR = 104 degrees /103 degrees ) is responsible for the hysteresis. The second level of topography raises the contact angles of the post tops and the macroscopic sample to theta(A)/theta(R) = >176 degrees />176 degrees and eliminates hysteresis. The increase in Laplace pressure due to the increase in the advancing contact angle of the post tops is a second reason that two length scales of topography are important.  相似文献   

7.
The preparation and formation mechanism of n-hexadecane/water emulsions using natural beta-cyclodextrin (beta-CD) and chemically modified beta-CDs (triacylated beta-cyclodextrins) as an emulsifier were investigated. The stable water/oil (W/O) emulsion was formed using tripropanoyl-beta-CD (TP-beta-CD). From observation using the contact angle (theta(ow)) of precipitates derived from CD, it was clarified that oil/water (O/W) emulsion at theta(ow)<90 degrees and (W/O) emulsion at theta(ow)>90 degrees are formed when the composition of each oil and water was mixed with natural beta-CD or triacylated beta-CDs.  相似文献   

8.
The spin Hamiltonian (SH) parameters (zero-field splitting D and anisotropic g factors g(||) and g( perpendicular)) and local structures for Cs(3)CoX(5) (X = Cl, Br) are theoretically studied from the perturbation formulas of the SH parameters for a 3d(7) ion in tetragonally distorted tetrahedra based on the cluster approach. In these formulas, both the contributions from the crystal-field (CF) mechanism and those from the charge-transfer (CT) mechanism are taken into account. It is found that the [CoX(4)](2-) clusters are slightly elongated and the tetragonal distortion angles Deltatheta(=theta-theta(0), where theta(0) equals to approximately 54.74 degrees is the bonding angle related to the C(4)-axis in regular tetrahedra) are about -1.68 degrees and -1.71 degrees for X = Cl and Br, respectively. The calculated SH parameters as well as the effective magnetic moments based on the above angles are in reasonable agreement with the observed values. From the studies, the importance of the contributions to the SH parameters from the CT mechanism increases with increasing the spin-orbit coupling coefficient of the ligand, i.e., Cl(-) < Br(-). The results are compared with those obtained from the conventional crystal-field model in the previous works.  相似文献   

9.
Deoxygenations of (silox)(3)WNO (12) and R(3)PO (R = Me, Ph, (t)Bu) by M(silox)(3) (1-M; M = V, NbL (L = PMe(3), 4-picoline), Ta; silox = (t)Bu(3)SiO) reflect the consequences of electronic effects enforced by a limiting steric environment. 1-Ta rapidly deoxygenated R(3)PO (23 degrees C; R = Me (DeltaG degrees (rxn)(calcd) = -47 kcal/mol), Ph) but not (t)Bu(3)PO (85 degrees, >2 days), and cyclometalation competed with deoxygenation of 12 to (silox)(3)WN (11) and (silox)(3)TaO (3-Ta; DeltaG degrees (rxn)(calcd) = -100 kcal/mol). 1-V deoxygenated 12 slowly and formed stable adducts (silox)(3)V-OPR(3) (3-OPR(3)) with OPR(3). 1-Nb(4-picoline) (S = 0) and 1-NbPMe(3) (S = 1) deoxygenated R(3)PO (23 degrees C; R = Me (DeltaG degrees (rxn)(calcd from 1-Nb) = -47 kcal/mol), Ph) rapidly and 12 slowly (DeltaG degrees (rxn)(calcd) = -100 kcal/mol), and failed to deoxygenate (t)Bu(3)PO. Access to a triplet state is critical for substrate (EO) binding, and the S --> T barrier of approximately 17 kcal/mol (calcd) hinders deoxygenations by 1-Ta, while 1-V (S = 1) and 1-Nb (S --> T barrier approximately 2 kcal/mol) are competent. Once binding occurs, significant mixing with an (1)A(1) excited state derived from population of a sigma-orbital is needed to ensure a low-energy intersystem crossing of the (3)A(2) (reactant) and (1)A(1) (product) states. Correlation of a reactant sigma-orbital with a product sigma-orbital is required, and the greater the degree of bending in the (silox)(3)M-O-E angle, the more mixing energetically lowers the intersystem crossing point. The inability of substrates EO = 12 and (t)Bu(3)PO to attain a bent 90 degree angle M-O-E due to sterics explains their slow or negligible deoxygenations. Syntheses of relevant compounds and ramifications of the results are discussed. X-ray structural details are provided for 3-OPMe(3) (90 degree angle V-O-P = 157.61(9) degrees), 3-OP(t)Bu(3) ( 90 degree angle V-O-P = 180 degrees ), 1-NbPMe(3), and (silox)(3)ClWO (9).  相似文献   

10.
Two polyester textiles, conventional polyester and microfiber polyester fabrics, were hydrophobized using a simple, patented water-repellent silicone coating procedure. Water contact angles on these two surfaces are theta(A)/theta(R) = 151 degrees/140 degrees and theta(A)/theta(R) = 170 degrees/165 degrees, respectively. A smooth surface of this of this coating exhibits theta(A)/theta(R) = 110 degrees/100 degrees. The binary length scale topography (approximately 2 microm/ approximately 50 microm) of the microfiber polyester is responsible for relieving receding contact line pinning and promoting water repellency that is superior to that of the lotus leaf. The recent literature on superhydrophobic surfaces is criticized for neglecting literature of the 1940s.  相似文献   

11.
[reaction: see text] The aminolysis reactions of aryl N-ethyl thionocarbamates (ETNC/EtHN-C(=S)-OC6H4Z) with benzylamines (XC6H4CH2NH2) in acetonitrile are investigated at 30.0 degrees C. The rate of ETNC is slower by a factor of ca. 3 than the corresponding aminolysis of aryl N-ethyl thiocarbamate (AETC/EtHN-(C=O)-SC6H4Z), which has been interpreted in terms of cooperative effects of atom pairs O and S on the reactivity and mechanism. For concerted processes, these effects predict a rate sequence, -C(=S)-S- < -C(=S)-O- < -C-(=O)-S- < -C-(=O)-O-, and the present results are consistent with this order. The negative cross-interaction constant, rho(XZ) = -0.87, the magnitude of betaZ (= 0.36-0.50) and failure of the RSP are in accord with the concerted mechanism. The normal kinetic isotope effects, kH/kD = 1.52-1.78, involving deuterated benzylamines suggest a hydrogen-bonded cyclic transition state. Other factors influencing the mechanism are also discussed.  相似文献   

12.
We study the wetting by water of complex "hydrophobic-hydrophilic" surfaces made of a hydrophobic substrate covered by a hydrophilic polymer brush. Polystyrene (PS) substrates covered with polystyrene- block-poly(acrylic acid) PS- b-PAA diblock copolymer layers were fabricated by Langmuir-Schaefer depositions and analyzed by atomic force microscopy (AFM) and ellipsometry. On bare PS substrate, we measured advancing angles theta A = 93 +/- 1 degrees and receding angles theta R = 81 +/- 1 degrees . On PS covered with poorly anchored PS- b-PAA layers, we observed large contact angle hysteresis, theta A approximately 90 degrees and theta R approximately 0 degrees , that we attributed to nanometric scale dewetting of the PS- b-PAA layers. On well-anchored PS- b-PAA layers that form homogeneous PAA brushes, a wetting transition from partial to total wetting occurs versus the amount deposited: both theta A and theta R decrease close to zero. A model is proposed, based on the Young-Dupre equation, that takes into account the interfacial pressure of the brush Pi, which was determined experimentally, and the free energy of hydration of the polyelectrolyte monomers Delta G PAA (hyd), which is the only fitting parameter. With Delta G PAA (hyd) approximately -1300 J/mol, the model renders the wetting transition for all samples and explains why the wetting transition depends mainly on the average thickness of the brush and weakly on the length of PAA chains.  相似文献   

13.
We report the results of a systematic study of the effect of the surface energy of the walls of microchannels on emulsification in parallel flow-focusing microfluidic devices. We investigated the formation of water-in-oil (W/O) and oil-in-water (O/W) emulsions and found that the stability of microfluidic emulsification depends critically on the preferential wetting of the walls of the microfluidic device by the continuous phase. The condition for stable operation of the device is, however, different than that of complete wetting of the walls by the continuous phase at equilibrium. We found that W/O emulsions form when the advancing contact angle of water on the channel wall exceeds theta approximately 92 degrees. This result is unexpected because at equilibrium even for theta < 92 degrees the microchannels would be completely wet by the organic phase. The criterion for the formation of W/O emulsions (theta > 92 degrees) is thus more stringent than the equilibrium conditions. Conversely, we observed the stable formation of O/W emulsions for theta < 92 degrees, that is, when the nonequilibrium transition to complete wetting by oil takes place. These results underlie the importance of pinning and the kinetic wetting effects in microfluidic emulsification. The results suggest that the use of parallel devices can facilitate fast screening of physicochemical conditions for emulsification.  相似文献   

14.
The molecular and conformational structures of 3-chloropropanoyl chloride (CH(2)Cl-CH(2)-C(=O)Cl) have been studied by using gas-phase electron diffraction (GED) data obtained at 22 degrees C (295 K) and ab initio molecular orbital (MO) and density functional theory (DFT) calculations up to the levels of MP4(SDQ) and B3LYP using larger basis sets. Normal coordinate calculations (NCA) taking into account nonlinear vibrational effects were also used in the analyses. The title compound may have up to four low-energy conformers in the gas phase, labeled according to the position of each of the two chlorine atoms in relation to the CCC propanoyl backbone, labeling the carbonyl chlorine torsion angle first: AA, AG, GG, and GA; where A is anti (ideal C-C-C-Cl torsion angle of approximately 180 degrees) and G is gauche (ideal C-C-C-Cl torsion angle of approximately 60 degrees). It has been judged from the experimental GED data and the theoretical calculations, as well as from previously published infrared (IR) studies on the molecule in both the liquid phase and in argon-trapped matrices at 10 K, that the gas phase consists of a mixture of at least three conformers: AA (most stable), AG, and GG, with the possibility of a smaller contribution (<10%) from the higher-energy GA form. The GA conformer cannot be ruled out by the GED experimental data. Relevant structural parameter values obtained from the GED least-squares refinements, with calculated ab initio MO MP2/6-31+G(2d,p) values used as constraints, were as follows (AA values with estimated 2sigma uncertainties): Bond lengths (r(h1)): r(C-C(=O)) = 1.505(4) A, r(C-CH(2)Cl) = 1.520(4) A, r(C=O) = 1.197(4) A, r(C(=O)-Cl) = 1.789(3) A, and r(C-Cl) = 1.782(3) A. Bond angles (angle(h1)): angle CCC = 111.5(11) degrees , angle CCO = 127.0(5) degrees, angle CC(O)Cl = 112.5(3) degrees, and angle CCCl = 110.3(3) degrees. Torsion angles (phi(C-C) = phi(ClCCC)): for AA, phi(1)(C-C(O)) = phi(2)(C-CH(2)Cl) = 180 degrees (assumed for true C(s) symmetry); for AG, phi(1)(C-C(O)) = -140(5) degrees, phi(2)(C-CH(2)Cl) = 76(13) degrees; for GG, phi(1)(C-C(O)) = 46(8) degrees, phi(2)(C-CH(2)Cl) = 77(14) degrees; for GA, phi(1)(C-C(O)) = 67.9 degrees (assumed), phi(2)(C-CH(2)Cl) = 177.8 degrees (assumed). The non-AA conformers all have chiral C(1) symmetry with twice the statistical weight (multiplicity) of C(s). The MP2/6-31+G(2d,p) calculated composition (%) based on the zero-point energy (ZPE) corrected energy differences, and the statistical weights for conformers: AA/AG/GG/GA = 28/35/28/9 was assumed in the final GED refinement. The more recent literature concerning the title molecule, as well as for several related molecules, has been examined and a survey has been attempted in the present article. The new experimental results for 3-chloropropanoyl chloride are discussed and compared with the previously published findings.  相似文献   

15.
16.
As a model of the core of molecules forming liquid crystals, the molecular structure of phenyl benzoate (Ph-C(=O)-O-Ph) at 409 K was determined by gas electron diffraction, and the relationship between the gas-phase structures of model compounds and the nematic-to-liquid transition temperatures was studied. Structural constraints were obtained from RHF/6-31G ab initio calculations. Vibrational mean amplitudes and shrinkage corrections were calculated from the harmonic force constants given by normal coordinate analysis. Thermal vibrations were treated as small-amplitude motions, except for the phenyl torsion, which was treated as a large-amplitude motion. The potential function for torsion was assumed to be V(phi(1),phi(2)) = V(12)(1 - cos 2phi(1))/2 + V(14)(1 - cos 4phi(1))/2 + V(22)(1 - cos 2phi(2))/2, where phi(1) and phi(2) denote the torsional angles around the C-Ph and O-Ph bonds, respectively. The potential constants (V(ij)()/kcal mol(-)(1)) and the principal structure parameters (r(g)/A, angle(alpha)/deg) with the estimated limits of error (3sigma) are as follows: V(12) = -1.3 (assumed); V(14) = -0.5(9); V(22) = 3.5(15); r(C=O) = 1.208(4); r(C(=O)-O) = 1.362(6); r(C(=O)-O) - r(O-C) = -0.044 (assumed); r(C(=O)-C) = 1.478(10); = 1.396(1); angleOCO = 124.2(13); angleO=CC = 127.3(12); angleCOC = 121.4(22); ( angleOCC(cis) - angleOCC(trans))/2 = 3.0(15); ( angleC(=O)CC(cis) - angleC(=O)CC(trans))/2 = 4.8(17), where < > means an average value and C-C(cis) and C-C(trans) bonds are cis and trans to the C(=O)-O bond, respectively. The torsional angle around the O-Ph bond was determined to be 64(+26,-12) degrees. An apparent correlation was found between the contributions of the cores to the clearing point of liquid crystals and the gas-phase structures of model compounds of the cores of mesogens, i.e., phenyl benzoate, trans-azobenzene (t-AB), N-benzylideneaniline, N-benzylideneaniline N-oxide (NBANO), trans-azoxybenzene (t-AXB), and trans-stilbene. The structures of t-AB, NBANO, and t-AXB have been obtained by our research group.  相似文献   

17.
Syndiotactic poly(methyl methacrylate (s-PMMA) may undergo aggregation in n-butyl chloride (n-BuCl) at temperatures below the theta temperature. The aggregation behavior of the s-PMMA with weight-average molecular weight M(w) =6.06 x 10(5) g mol(-1) was studied by a combination of static and dynamic laser-light-scattering experiments. A solution of concentration 1.12 x 10(-4) g mL(-1) was quenched from 50 degrees C (above the theta temperature in n-BuCl, 35 degrees C to 12 degrees C, and the aggregation process was measured over 60 h. The time dependence of M(w) the root-mean-square z-average radius of gyration < R(g) >, and the average hydrodynamic radius were used to monitor the growth of the aggregates, with the result M(w) approximately < R(g) > d(f) (where d(f) = 1.98 +/- 0.02), which implies the formation of a fractal aggregate. The observed fractal dimension, d(f), is close to that expected for a reaction-limited cluster aggregation for which d(f) = 2.1. In addition, atomic force microscopy was used to image the aggregates.  相似文献   

18.
The helicity reporting parameters t/c and [theta](222) have been measured at 2, 25, and 60 degrees C in water for the solubilized polyalanine series Ac-Hel-A(n)-(t)LInp(2)K(4)W-NH(2) of length 4 < or = n < or = 14 that bears the helix-initiating and monitoring N-cap Ac-Hel and the spaced solubilizer (t)LInp(2)K(4)W-NH(2) as a C-cap. Correlation of t/c with length shows that the helical propensity for n < or = 6 is ca. 1.0, consistent with our early reports, but that a dramatic increase in temperature dependence and helical propensity occurs for n > or = 8. A model based on hydrogen-bonding cooperativity is proposed to explain this finding, and both t/c and [theta](222) are modeled successfully by length-dependent alanine propensities at 2 degrees C of 1.03 for n = 6, 1.15, for 7 < or = n < or = 9 and 1.26 for n > or = 10. The implications of these results for the energetics of helix formation by alanine-rich peptide sequences are discussed.  相似文献   

19.
Vibrational sum-frequency spectroscopy and surface tensiometry have been used to study the adsorption of m- and p-cyanophenol at the air-water interface. Spectra of the cyano (CN) group under different polarization schemes are utilized to determine its hydrogen bonding environment and orientation. For both isomers, it is found that the cyano group is hydrogen bonded at the interface but that the CN orientation is independent of surface density. The average CN tilt angle (theta(0)), however, is found to differ between the isomers, such that the CN group points down toward the aqueous phase for m-cyanophenol (theta(0) = 96-106 degrees ) but points up toward the vapor phase for the p-cyanophenol (theta(0) = 65-80 degrees ). In addition, this average tilt angle is distributed over a narrow range, sigma(0) < 10 degrees for the meta isomer and sigma(0) < 16 degrees for the para isomer.  相似文献   

20.
Yip JH  Suwarno  Vittal JJ 《Inorganic chemistry》2000,39(16):3537-3543
Four cyclometalated Pt(II) complexes, [PtL(L')][ClO4] [HL = 6-phenyl-2,2'-bipyridine; L' = pyridine (1), 4-aminopyridine (2), 2-aminopyridine (3), 2,6-diaminopyridine (4)], were designed and synthesized to probe intramolecular N...Pt interactions. The crystal structures of the compounds show that the pyridine ligands are almost perpendicular to the planes of the molecules. In addition, the pendant NH2 groups of the 2-aminopyridine and 2,6-diaminopyridine ligands are close to the metal centers in complexes 3 and 4, with the Pt-N(H2) distances (3.065(3)-3.107(3) A) significantly shorter than the sum of the van der Waals radii of Pt and N. These compounds were also studied by electronic spectroscopy. All the complexes display intense intraligand pi-->pi* transitions at 200-340 nm (epsilon = 10(4)-10(3) M-1 cm-1) and moderately intense (epsilon approximately 10(3) M-1 cm-1) metal (Pt)-to-ligand (pi*) charge-transfer (MLCT) transitions. For 1 and 2, the MLCT transitions occur at approximately 390 nm, but the MLCT transition of 4 is exceptionally low in energy (492 nm). The low-temperature emission spectra of the complexes in frozen EMD glass indicate that 3 pi pi* is the emissive excited state for 1 and 2 but the emission of 3 is from a 3MLCT excited state. On the basis of the spectroscopic results, the order of energy of the MLCT excited states is established as 1 approximately 2 > 3 > 4. It is proposed that the red shifts of the MLCT transitions in 3 and 4 are due to increased electron-donating abilities of the ancillary pyridine ligands and intramolecular interactions between the orbitals of amine nitrogen lone pairs. Crystal data for the complexes are as follows. 1: triclinic P1, Z = 2, a = 8.7917(2) A, b = 10.6398(3) A, c = 11.9592(3) A, alpha = 107.130(1) degrees, beta = 92.522(1) degrees, gamma = 111.509(1) degrees. 2.CH3CN: triclinic P1, Z = 2, a = 7.0122(4) A, b = 12.9653(8) A, c = 14.0283(9) A, alpha = 107.3100(10) degrees, beta = 102.7640(10) degrees, gamma = 91.6320(10) degrees. 3.CH3CN: triclinic P1, Z = 2, a = 7.6459(1) A, b = 10.8433(1) A, c = 14.8722(2) A, alpha = 99.383(1) degrees, beta = 93.494(1) degrees, gamma = 101.385(1) degrees. 4.CH3CN: triclinic P1, Z = 2, a = 7.862(2) A, b = 10.977(3) A, c = 14.816(5) A, alpha = 99.34(2) degrees, beta = 92.64(2) degrees, gamma = 104.11(2) degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号