首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In chemical response the BH3 and BF3 molecules undergo the physical process of planar (D3h) to pyramidal (C3v) reorganization in shape as the condition precedent to the event of chemical reaction under the requirement of symmetry. A frontier orbital and density functional study of the variation of the stability of electronic structures and chemical reactivity of associated with the physical process of D3h to C3v geometry reorganization has been performed. The theoretical parameters viz. eigenvalues of HOMO and LUMO, the HOMO and LUMO energy gap, the global hardness and global softness, the chemical potential, the condensed Fukui function, and local softness of B atom, the reaction site, have been computed over a wide range of ∠XBX angles. The nature of variation in the intrinsic chemical reactivity, global and local, of the molecules associated with their geometry reorganization during the chemical event of charge transfer interaction involving their frontier molecular orbitals has been quantitatively explored. The hardness profiles as a function of reaction coordinates are consistent with the principle of maximum hardness (PMH). Results demonstrate that the hardness and softness are not a static and invariable property of molecules but a dynamic and variable function of molecular structure. The hardness parameters and the HOMO–LUMO gap of the molecules are so modified with the distortion of molecular geometry that, after a certain stage of molecular deformation, the profiles of such parameters of the molecules intersect and cross each other, signifying that the relative order of the intrinsic hardness of their equilibrium geometry is reversed. The intrinsically hard molecule BF3 becomes softer than the intrinsically soft molecule BH3 as a consequence of structural distortion. The increase in chemical reactivity computed in terms of density functional parameters are transparent and justified in terms of the profiles of the eigenvalues of the frontier orbitals. The profiles of chemical potential reveal the inherent difference in the tendency of backdonation from two molecules. The computed values of Fukui functions and local softness parameters of the B atom site demonstrate that the concept of local softness can be exploited for a theoretical analysis and understanding of the characteristic chemical events of the molecules under consideration. The profiles of the Fukui functions and local softness parameters of the two molecules seem to reflect and reveal their intrinsic difference in the tendency of receiving donation in the LUMO (electrophilicity) and that of backdonation from the HOMO (nucleophilicity) and the inherent difference of overall reactivity of the two molecules by a simultaneous operation of two opposing processes of charge transfer. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

3.
The Fukui functions based on the computable local polarizability vector have been presented for a group of simple molecules. The necessary approximation for the density functional theory softness kernel has been supported by a theoretical analysis unifying and generalizing early concepts produced by the several authors. The exact relation between local polarizability vector and the derivative of the nonlocal part of the electronic potential over the electric field has been demonstrated. The resulting Fukui functions are unique and represent a reasonable refinement when compared to the classical ones that are calculated as the finite difference of the density in molecular ions. The new Fukui functions are strongly validated by their direct link to electron dipole polarizabilities that are reported experimentally and by other computational methods.  相似文献   

4.
Bond Fukui functions and matrices are introduced for ab initio levels of theory using a Mulliken atoms in molecules model. It is shown how these indices may be obtained from first‐order density matrix derivatives without need for going to second‐order density matrices as in a previous work. The importance of taking into account the nonorthogonality of the basis in ab initio calculations is shown, contrasting the present results with previous work based on Hückel theory. It is shown how the extension of Fukui functions to Fukui matrices allows getting more insight into the nature of bond Fukui functions. All presently introduced indices respect the necessary normalization conditions and include the classical single atom condensed Fukui functions. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The chemistry of thiadiazoles and their derivatives is of considerable interest in chemistry owing to their pharmacological and potential industrial applications. In this context, a detailed study of isomeric thiadiazole molecules has been done using local (SVWN; Slater, and Vosko, Wilk and Nusair) and nonlocal (BLYP; Becke, and Lee, Yang and Parr) density functionals and optimizing the molecular geometries by means of the gradient technique. A charge sensitivity analysis of the studied molecule has been performed by resorting to density functional theory, obtaining several sensitivity coefficients such as the molecular energy, net atomic charges, global and local hardness, global and local softness and Fukui functions. With these results and the analysis of the dipole moments, the molecular electrostatic potentials and the total electron density maps, several conclusions have been inferred about the preferred sites of chemical reaction of the studied compounds. The condensed Fukui functions are shown to be one of the best criteria for predicting chemical reactivity.  相似文献   

6.
The analysis of previously reported shortcomings of the condensed Fukui functions obtained making use of the quantum theory of atoms in molecules indicates these drawbacks are due to the inadequacy of the definition employed to compute them and not to the partitioning. A new procedure, which respects the mathematical definition and solves these problems, is presented for the calculation of condensed Fukui functions for atomic basins defined according to the quantum theory of atoms in molecules. It is tested in a set of 18 molecules, which includes the most controversial reported cases.  相似文献   

7.
We combine photoelectron and x-ray absorption spectroscopy with density functional theory to derive a molecular orbital picture of the hydrogen bond in ice. We find that the hydrogen bond involves donation and back-donation of charge between the oxygen lone pair and the O-H antibonding orbitals on neighboring molecules. Together with internal s-p rehybridization this minimizes the repulsive charge overlap of the connecting oxygen and hydrogen atoms, which is essential for a strong attractive electrostatic interaction. Our joint experimental and theoretical results demonstrate that an electrostatic model based on only charge induction from the surrounding medium fails to properly describe the internal charge redistributions upon hydrogen bonding.  相似文献   

8.
The Fukui function is considered as the diagonal element of the Fukui matrix in position space, where the Fukui matrix is the derivative of the one particle density matrix (1DM) with respect to the number of electrons. Diagonalization of the Fukui matrix, expressed in an orthogonal orbital basis, explains why regions in space with negative Fukui functions exist. Using a test set of molecules, electron correlation is found to have a remarkable effect on the eigenvalues of the Fukui matrix. The Fukui matrices at the independent electron model level are mathematically proven to always have an eigenvalue equal to exactly unity while the rest of the eigenvalues possibly differ from zero but sum to zero. The loss of idempotency of the 1DM at correlated levels of theory causes the loss of these properties. The influence of electron correlation is examined in detail and the frontier molecular orbital concept is extended to correlated levels of theory by defining it as the eigenvector of the Fukui matrix with the largest eigenvalue. The effect of degeneracy on the Fukui matrix is examined in detail, revealing that this is another way by which the unity eigenvalue and perfect pairing of eigenvalues can disappear.  相似文献   

9.
Different procedures to obtain atom condensed Fukui functions are described. It is shown how the resulting values may differ depending on the exact approach to atom condensed Fukui functions. The condensed Fukui function can be computed using either the fragment of molecular response approach or the response of molecular fragment approach. The two approaches are nonequivalent; only the latter approach corresponds in general with a population difference expression. The Mulliken approach does not depend on the approach taken but has some computational drawbacks. The different resulting expressions are tested for a wide set of molecules. In practice one must make seemingly arbitrary choices about how to compute condensed Fukui functions, which suggests questioning the role of these indicators in conceptual density-functional theory.  相似文献   

10.
11.
12.
Negative values for the condensed Fukui function are identified as the key to designing molecules in which reduction of the molecule is associated with oxidation of one of the atomic centers, or vice versa. Sufficient conditions for negative condensed Fukui functions are derived, and metal complexes are identified as likely candidates for this exotic redox chemistry. Based on our theoretical understanding of where negative values of the Fukui function occur [P. W. Ayers, R. C. Morrison and R. K. Roy. J. Chem. Phys., 2002, 116, 8731], molecular-orbital diagrams for molecules where molecular oxidation is coupled to atomic reduction (or vice versa) are sketched. Whether one could design a metal complex with these properties is an open question but, if one could, then that compound would have fascinating redox chemistry and interesting magnetic properties. Candidate molecules for this property include metal complexes with small metal-to-ligand and/or ligand-to-metal charge transfer excitation energies.  相似文献   

13.
14.
Density functional molecular cluster calculations have been used to investigate the interaction of SO(2) with defect-free TiO(2)(110) and Ti(2)O(3)(102) surfaces. Adsorbate geometries and chemisorption enthalpies have been computed and discussed. Several local minima have been found for TiO(2)(110), but only one seems to be relevant for the catalytic conversion of SO(2) to S. In agreement with experiment, the bonding of SO(2) to Ti(2)O(3)(102) is much stronger than that on TiO(2)(110). Moreover, our results are consistent with the surface oxidation and the formation of strong Ti-O and Ti-S bonds. On both substrates, the bonding is characterized by a two-way electron flow involving a donation from the SO(2) HOMO into virtual orbitals of surface Lewis acid sites (), assisted by a back-donation from surface states into the SO(2) LUMO. However, the localization of surface states and the strength of back-donation are very different on the two surfaces. On TiO(2)(110), back-donation is weaker, and it involves unsaturated bridging O atoms, while on Ti(2)O(3)(102), it implies the -based valence band maximum and significantly weakens the S-O bond.  相似文献   

15.
The existence of atomic silicon cryptates in siloxanic networks has been studied theoretically via density functional calculations. By modeling with model molecules the candidate sites to host atomic silicon, we found that metastable adducts can be formed only in regions where the siloxanic network is not subjected to steric constraints; stationary states are instead unstable in highly reticulated siloxanic networks. The nature of the oxo-oxygen-silicon bond at the SiO2 surface is analyzed in detail. It is concluded that silicon is kept at the surface in atomic-like configuration by (i) sigma charge donation from oxo-oxygen atoms into the empty silicon psigma orbital; (ii) pi charge back-donation from singly occupied silicon 3ppi orbitals into empty sigma* model molecule orbitals. Surprisingly, these results attribute to atomic silicon the character of bifunctional Lewis acid.  相似文献   

16.
The use of Fukui functions for the site selectivity of the formaldehyde molecule for nucleophilic, electrophilic and radical attacks has been made with special emphasis to the dependence of Fukui values on the basis sets as well as population schemes in the framework of B3LYP theory. Out of the five population schemes selected viz., Mulliken population analysis, natural population analysis, CHELP, CHELPG and atoms in molecules (AIM), it is found that the CHELPG and AIM schemes predict precise reactive site with less dependency on the basis sets. Charges derived from Hirshfeld partitioning, calculated using the BLYP/dnd method (implemented in the DMOL3 package), provide non-negative Fukui values for all the molecular systems considered in this study. Supporting results have been obtained for acetaldehyde and acetone molecules at the 6-31+G** basis set level. These results support the fact that high Fukui values correspond to soft–soft interaction sites. On the other hand, the correlation of the low Fukui value to the hard–hard interaction site merits further investigation. Received: 10 November 2001 / Accepted: 6 March 2002 / Published online: 13 June 2002  相似文献   

17.
Ab initio and density-functional theory calculations for a family of substituted acetylenes show that removing electrons from these molecules causes the electron density along the C-C bond to increase. This result contradicts the predictions of simple frontier molecular orbital theory, but it is easily explained using the nucleophilic Fukui function-provided that one is willing to allow for the Fukui function to be negative. Negative Fukui functions emerge as key indicators of redox-induced electron rearrangements, where oxidation of an entire molecule (acetylene) leads to reduction of a specific region of the molecule (along the bond axis, between the carbon atoms). Remarkably, further oxidization of these substituted acetylenes (one can remove as many as four electrons!) causes the electron density along the C-C bond to increase even more. This work provides substantial evidence that the molecular Fukui function is sometimes negative and reveals that this is due to orbital relaxation.  相似文献   

18.
In the Hirshfeld partitioning of the electron density, the molecular electron density is decomposed in atomic contributions, proportional to the weight of the isolated atom density in the promolecule density, constructed by superimposing the isolated atom electron densities placed on the positions the atoms have in the molecule. A maximal conservation of the information of the isolated atoms in the atoms-in-molecules is thereby secured. Atomic charges, atomic dipole moments, and Fukui functions resulting from the Hirshfeld partitioning of the electron density are computed for a large series of molecules. In a representative set of organic and hypervalent molecules, they are compared with other commonly used population analysis methods. The expected bond polarities are recovered, but the charges are much smaller compared to other methods. Condensed Fukui functions for a large number of molecules, undergoing an electrophilic or a nucleophilic attack, are computed and compared with the HOMO and LUMO densities, integrated over the Hirshfeld atoms in molecules.  相似文献   

19.
The metal-ligand bonds of the title compounds have been investigated with the help of an energy partitioning analysis at the DFT level. It was found that the attractive orbital interactions between Fe and ER in (CO)(4)Fe-ER arise mainly from Fe <-- ER sigma donation. Only the boron diyl complexes (CO)(4)Fe-BR have significant contributions by Fe --> ER pi back-donation, but the Fe <-- BR sigma-donation remains the dominant orbital interaction term. The relative contributions of Fe-ER sigma donation and pi back-donation are only slightly altered when R changes from a good pi donor to a poor pi donor. Electrostatic forces between the metal fragment and the diyl ligand are always attractive, and they are very strong. They arise from the attraction between the local negative charge concentration at the overall positively charged donor atom E of the Lewis base ER and the positive charge of the iron nucleus. Electrostatic interactions and covalent interactions in (CO)(4)Fe-ER complexes have a similar strength when E is Al--Tl and when R is a good pi donor substituent. The Fe-BR bonds of the boron carbonyldiyl complexes have a significantly higher ionic character than the heavier group-13 analogues. Weak pi donor substituents R enhance the ionic character of the (CO)(4)Fe-ER bond. The metal-ligand bonds in the homoleptic complexes Fe(EMe)(5) and Ni(EMe)(4) have a higher ionic character than in (CO)(4)Fe-ER. The contribution of the TM --> ER pi back-donation to the Delta E(orb) term becomes clearly higher and contributes significantly to the total orbital interactions in the homoleptic complexes where no other pi acceptor ligands are present. The ligand BMe is nearly as strong a pi acceptor in Fe(BMe)(5) as CO is in Fe(CO)(5).  相似文献   

20.
Wettability is one of the anisotropic surface properties of molecular crystals that exhibit the structural variance of chemical moieties on various growth faces. The divergence in liquid-solid interactions at different faces is thought to be related to the inherent responding capacity or sensitivity of a solid surface to the perturbation in electronic structures and atomic positions as a result of the contact by a liquid. Since the Fukui function, according to density functional theory (DFT), is a local function for describing such sensitivity to the structural perturbation and is directly related to local softness, it has been proposed and tested to use an integrated Fukui function over a crystallographic plane for describing the anisotropy of solid-liquid interactions. It is found that the contact angle of a polar solvent, such as water, on a crystal surface shows an intimate connection to the integrated Fukui functions of the surface, illustrating an extension of Pearson's HSAB (hard and soft acids and bases) to crystal systems. The concept of face-integrated Fukui function and the approach to apply the HSAB with the DFT-based concepts may provide a powerful means for describing anisotropic properties, including wettability of organic crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号