首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Li B  Corbett JD 《Inorganic chemistry》2006,45(10):3861-3863
The phase K3Mg20In14 was synthesized via high-temperature reactions of the elements in welded Ta tubes. The cubic crystal structure established by single-crystal X-ray diffraction means [space group Pm3m, Z = 1, a = 9.769(1) angstroms] features a 3D Mg-In network formed by K@Mg12In10 units plus cuboctahedral fillers, In@Mg12. This is the first example of a well-ordered stuffed BaHg11 structure (Pearson symbol cP37). On the basis of tight-binding linear muffin-tin orbital, atomic sphere approximation calculations, the electronic structure of the compound shows dominant Mg-In interactions and substantial participation of Mg in the overall network bonding. Both In-In and Mg-In bondings are effectively optimized at the Fermi level. The Fermi energy cuts through substantial densities of states, consistent with the measured metallic property.  相似文献   

2.
Li B  Corbett JD 《Inorganic chemistry》2005,44(19):6515-6517
Two isostructural compounds Na(3)MIn(2) (M = Au, Ag) with a NiTi(2)-type structure (Fd-3m) were synthesized via typical high-temperature reactions. The anionic M-In structure consists of tetrahedral star building units [In(4)M(4/2)] (TS) that are connected into a three-dimensional framework via shared TS vertexes, with the Na atoms filling the cages. On the basis of TB-LMTO-ASA calculations, the electronic structures of both compounds show substantial participation of sodium in the overall bonding of the structure. Compared with the Ag compound, relativistic effects in the Au phase appear to be significant, as shown in the M-M and M-Na bond length decreases of 0.03-0.04 A.  相似文献   

3.
Lin Q  Corbett JD 《Inorganic chemistry》2008,47(23):10825-10831
Synthetic explorations in the quaternary Li-Mg-Cu-Ga system yield the novel intermetallic Li(14.7(8))Mg(36.8(13))Cu(21.5(5))Ga(66) [P6m2, Z = 1, a = 14.0803(4) A, c = 13.6252 (8) A] from within a limited composition range. This contains a unique three-dimensional anionic framework consisting of distinct interbonded Ga(12) icosahedra, dimerized Li@(Cu,Mg)(10)Ga(6) icosioctahedra, and 15-vertex Li@(Cu,Mg)(9)Ga(6) and Li@Cu(3)Ga(12) polyhedra. These polyhedral clusters are hosted by M(20) (5(12)), M(24) (5(12)6(2)), and M(26) (5(12)6(3)) (M = Li/Mg) cages, respectively. The geometries and arrangements of these cages follow those in known type IV clathrate hydrates.  相似文献   

4.
This work presents a detailed, combined experimental and theoretical study on the structural stability of s-p bonded compounds with the BaAl4 structure type (space group I4/mmm, Z = 2) as part of a broad program to investigate the complex questions of structure formation and atomic arrangements in polar intermetallics. From ab initio calculations employing pseudopotentials and a plane wave basis set, we extracted optimized structural parameters, binding energies, and the electronic structure of the systems AeX(III)4, AeX(II)2X(IV)2, AeX(II)2X(III)2 (Ae = Ca, Sr, Ba; X(II) = Mg, Zn; X(III) = Al, Ga; X(IV) = Si, Ge). For all systems we found a pronounced pseudo-gap in the density of states separating network X42- bonding from antibonding electronic states that coincides with the Fermi level for an electron count of 14 electrons per formula unit, the optimum value for stable BaAl4-type polar intermetallics. However, the synthesis and structural characterization (from X-ray single crystal and powder diffraction data) of the new compounds AeZn2-Al2+, AeZn2-deltaGa2+delta (Ae = Ca, Sr, Ba; delta = 0-0.2) and AeMg0.9Al3.1, AeMg1.7Ga2.3 (Ae = Sr, Ba) manifested that electron deficiency is rather frequent for BaAl4-type polar intermetallics. The site preference for different "X" elements in the ternary systems was quantified by calculating "coloring energies", which, for some systems, was strongly dependent on the size of the electropositive Ae component. The Ae2+ cations decisively influence the nearest neighbor distances in the encapsulating polyanionic networks X4(2-) and the structures of these networks are surprisingly flexible to the size of the Ae component without changing the overall bonding picture. A monoclinically distorted variant of the BaAl4 structure occurs when the cations become too small for matching the size of encapsulating X4(2-) cages. An even larger size mismatch leads to the formation of the EuIn4 structure type.  相似文献   

5.
Doping of spin-ladder systems by isostructural paramagnetic complexes was attempted. Despite the close isostructural nature of the pure (DT-TTF)2[M(mnt)2] (M = Au, Ni, Pt) end-members, which present a ladder structure, doping of the spin-ladder (DT-TTF)2[Au(mnt)2] with either 5% or 25% [M(mnt)2]- (M = Ni, Pt) generates two (metrically) new phases. Their markedly different crystal structures have been determined using laboratory X-ray powder diffraction data. (DT-TTF)2[Au0.75Ni0.25(mnt)2] consists of a mixed-valence compound (of triclinic symmetry), which was only detected, pure or in a mixture of phases, when [Ni(mnt)2]- was used as a dopant. Differently, the stoichiometric 1:1 [DT-TTF][Au0.75Pt0.25(mnt)2] monoclinic phase was found when [Pt(mnt)2]- (in 5% and 25%) was employed as the doping agent. Remarkably, only in the 5% Pt doping experiment, the major component of the mixture was the ladder structure compound (DT-TTF)2[Au(mnt)2] doped with minor amounts of Pt. This 5% Pt-doped specimen shows an EPR signal (g = 2.0115, DeltaHpp = 114 G at 300 K) wider than the pure compound (DT-TTF)2[Au(mnt)2], denoting exchange between the donor spins and Pt(mnt)2- centers. The electrical transport properties of the 5% Pt-doped composition at high temperatures are comparable to those of (DT-TTF)2[Au(mnt)2] with room-temperature conductivity sigma300K = 13 S/cm and thermopower S300K = 46 microV/K, with a sharp transition at 223 K similar to that previously observed in the Cu analogue at 235 K.  相似文献   

6.
The covalent radius of Au I is about 0.07 Å smaller than that of AgI. This was determined from the crystal structures of the isostructural complexes [N(PPh3)][{Au(C6F5)3(μ-PPh2)}2M] (M=Au (structure shown in the picture), Ag). These mixed AuIII–M phosphides were synthesized from [Au(C6F5)3(PPh2H)], the first gold complex to contain a secondary phosphane.  相似文献   

7.
The title compounds were synthesized via high-temperature reactions of the elements in welded Ta tubes and characterized by single-crystal X-ray diffraction analyses and band structure calculations. SrAu(3.76(2))In(4.24) crystallizes in the YCo5In3 structure type with two of eight network sites occupied by mixtures of Au and In: Pnma, Z = 4, a = 13.946(7), b = 4.458(2), c = 12.921(6) A. Its phase breadth appears to be small. Sr4Au9In 13 exhibits a new structure type, P_6 m2, Z = 1, a = 12.701(2), c = 4.4350(9) A. The Sr atoms in both compounds center hexagonal prisms of nominally alternating In and Au atoms and also have nine augmenting (outer) Au + In atoms around their waists so as to define 21-vertex Sr@Au9M4In8 (M = Au/In) and Sr@Au9In12 polyhedra, respectively. The relatively larger Sr content in the second phase also leads to condensation of some of the ideal building units into trefoil-like cages with edge-shared six-member rings. One overall driving force for the formation of these structures can be viewed as the need for each Sr cation to have as many close neighbors as possible in the more anionic Au-In network. The results also depend on the cation size as well as on the flexibility of the anionic network and an efficient intercluster condensation mode as all clusters are shared. Band structure calculations (LMTO-ASA) emphasize the greater strengths (overlap populations) of the Au-In bonds and confirm expectations that both compounds are metallic.  相似文献   

8.
Complexes of copper(II) bromide with cyclic and isostructural acyclic phane ligands containing derivatives of pyrimidine nucleobases (cytosine and uracil) were synthesized and characterized. In two cyclic pyrimidinophanes used, the macrocycles included two 6-methylthiocytosine and one 6-methyluracil units linked by polymethylene chains (L3) and two 6-methyluracil units linked by N-containing bridges (L5). Ligand L3 and its isostructural acyclic analogs are coordinated by the Cu2+ ion through the same donor sites (the ring N atoms of the thiocytosine units). The coordination polyhedra of the Cu atom in complexes with cyclic and acyclic ligands are different. Ligand L5 and its isostructural acyclic analog also form copper(II) complexes with different coordination polyhedra involving different donor sites. The acyclic ligand is coordinated by the Cu2+ ion via the bridging N atom, while cyclic ligand L5, via the uracil CO groups (the bridging N atoms become protonated). The resulting complexes are dielectrics.  相似文献   

9.
Three (5∶1∶3, 1∶1∶1, and 2∶1∶6) ternary phases were discovered in the K2MoO4?AMoO4?Zr(MoO4)2 system, where A is Mg or Mn. For A=Mg, we have synthesized 5∶1∶3 single crystals and determined their crystal structure from X-ray diffraction data (a CAD-4 automatic diffractometer, MoKα radiation, 1166 F(hkl), and R=0.026). The compound crystallizes in the trigonal system with space group R3c, a=10.576(1), c=37.511(3), Å, Z=6, dcalc=3.576, and dmsd=3.54 g/cm3. The structure is a three-dimensional composite framework of alternating Mo tetrahedra and (Mg, Zr) octahedra, which are linked via the common O vertices. Potassium atoms of three kinds are located in large framework cavities. Their polyhedra (ten-vertex polyhedra and a cubeoctahedron) are linked together by common faces and edges to form infinite zigzag columns of a large section. When solving the structure, we refined the composition of the crystals and the distribution of Mg2+ and Zr4+ cations in the M(1) and M(2) positions resulting in the formula above.  相似文献   

10.
The synthesis and structure of the isostructural acentric compounds Sr(3)Be(2)B(5)O(12)(OH) (1) and Ba(3)Be(2)B(5)O(12)(OH) (2) are reported for the first time. These compounds crystallize in the space group R3m, and the unit cell parameters are a = 10.277(15) ? and c = 8.484(17) ? for 1 and a = 10.5615(15) ? and c = 8.8574(18) ? for 2. The structures consist of a network of [Be(2)B(4)O(12)(OH)] units interwoven with a network consisting of MO(9) polyhedra (M = Sr, Ba) and BO(3) triangles and exemplify how acentric building blocks such as [BO(3)](3-), [BO(4)](5-), and [BeO(4)](6-) can be especially suitable to build noncentrosymmetric long-range structures. Both networks are centered on the 3-fold rotation axis and present themselves in alternating fashion along [001]. Acentricity is imparted by the alignment of the polarities of BO(3) and BeO(4) environments. Infrared spectroscopy has been used to confirm the local geometries of B and Be, as well as the presence of hydroxide in the crystal structure. Another interesting feature of these compounds is the presence of disorder involving Be and B at the tetrahedral Be site. The degree of the disorder has been confirmed by observing a noticeable shortening of average Be-O bond distances.  相似文献   

11.
在强碱性水热条件下合成了两种新化合物Sr6Sb4Co3O14(OH)10(SSC)与Sr6Sb4Mn3O14(OH)10(SSM).采用粉末X射线衍射数据,通过Rietveld方法进行了结构分析,讨论了金属离子的拓扑结构.两种化合物均为石榴石-水榴石相关结构,空间群I43d,晶胞参数a分别为1.30634(2)nm(SSC)和1.31367(1)nm(SSM).结构中,SbO6八面体与MO4(M=Co,Mn)四面体共顶点连接,Sb5+-M2+(M=Co,Mn)离子表现为ctn即C3N4型的拓扑结构.拓扑结构中,Sb5+为三连接,过渡金属离子M2+(M=Co,Mn)为四连接.Sb5+离子的拓扑结构为体心立方,而M2+(M=Co,Mn)分布呈类风扇状,相互连接形成thp型拓扑结构(即Th3P4中Th原子之间连接关系).过渡金属离子的分布与化合物表现出的磁性质密切相关,Co2+(Mn2+)间存在反铁磁相互作用.Sr6Sb4Co3O14(OH)10在低温下表现出反铁磁倾斜有序.Sr6Sb4Co3O14(OH)10和Sr6Sb4Mn3O14(OH)10在高温下发生分解,产物主相为双钙钛矿Sr2(Sb,M)2O6(M=Co,Mn).  相似文献   

12.
The title compound Rb(14)(Mg(1-x)In(x))(30) (x = 0.79-0.88) has been obtained from high-temperature reactions of the elements in welded Ta tubes. There is no analogous binary compound without Mg. The crystal structure established by single-crystal X-ray diffraction means (space group P2m (No. 189), Z = 1 and a = b = 10.1593(3) Angstroms, c = 17.783(1) Angstroms for x = 0.851) features two distinct types of anionic layers: isolated pentacapped trigonal prismatic In(11)(7-) clusters and condensed [(Mg(x)In(1-x))(5)In(14)](7-) layers. The latter consists of analogous M(11) (M = Mg/In) fragments that share prismatic edges and are interbridged by trigonal M(3) units. The structure shows substantial differences from related A(15)Tl(27) (A = Rb, Cs) in which the cation A that centers a six-membered ring of Tl(11) fragments is replaced by M(3.) Both linear muffin-tin orbital and extended Hückel calculations are used to analyze the observed phase width and site preferences. We further utilize the results to rationalize the distortion of the M(11) fragment in the condensed layer and also to correlate with electrical properties. An isomorphous phase region (Rb(y)K(1-)(y))(14)(Mg(1-x)In(x))(30) (y = 0.52, 0.66 for x = 0.79) is also formed.  相似文献   

13.
Actinide (AThCm)-noble metal phases with platinum, palladium, rhodium, and iridium (B)- and lanthanide-noble metal phases with platinum and palladium have been prepared by reduction of corresponding oxides or fluorides in the presence of noble metals by extremely purified hydrogen. Alloy phases of composition AB2, AB3, and/or AB5 have been identified, most of which crystallize in the Cu2Mg, Cu3Au, Ni3Ti, Cd3Mg, Ni5U, and Pt5Sm types of structure. The lattice constants of isostructural series show a trend which also is known for the radii of the actinide elements. Analytical data, self-irradiation effects, magnetic data, nuclear γ resonance spectra, and thermal behaviour of selected alloy phases as well as the preparation of alloy phases of some other transition and main group elements, e.g., Zr, Hf, Nb, Ta, MgBa, are reported.  相似文献   

14.
The isomorphous coordination polymers {micro-Au(CN)(2)](2)[(M(NH(3))(2))(2)(mu-bpym)]}[Au(CN)(2)](2) (M = Co(II) (1), Ni(II) (2), Cu(II) (3)) have been prepared from the reaction of 2 equiv. M(NO(3))(2) x nH(2)O (M = Cu(II), n = 3; M = Ni(II) and Co(II), n = 6) with 1 equiv. of bipyrimidine (bpym) in aqueous ammonia and then with an aqueous solution containing 1 equiv. of K[Au(CN)(2)]. The structures of these complexes are made of bpym bridged centrosymmetric dinuclear [M(NH(3))(2)(mu-bpym)M(NH(3))(2)] units connected by [Au(CN)(2)](-) anions to four other dinuclear units giving rise to a cationic 2D (4,4) rectangular grid network, its charge being balanced by two non-coordinated [Au(CN)(2)](-). The layers are stacked in such a way that the ammonia coordinated molecules are interdigitated and aligned above and below one sheet with cavities in neighbouring sheets, giving rise to an ABAB[dot dot dot] repeat pattern of layers. Gold atoms of bridging and non-bridging dicyanoaurate anions are involved in short aurophilic interactions (Au1-Au2 distances in the range 3.12-3.14 Angstrom), leading to a chain of gold atoms running along the a direction. Neighbouring gold chains are further connected by weaker aurophilic interactions (Au1-Au1 distances in the range 3.43-3.49 Angstrom), affording a honeycomb-like 2D network of gold atoms. The (4,4) rectangular sheets and (6,3) honeycomb sheets share the Au2 atoms, leading to a unique 3D network. Magnetic measurements clearly show the existence of antiferromagnetic exchange coupling between the metal ions with susceptibility maxima at 17 K (1), 22 K (2), and 17 K (3). The data of 1 were analyzed through a full Hamiltonian involving spin-orbit coupling, axial distortion, Zeeman interactions and magnetic exchange coupling between Co(II), and the best fit gives J = -9.23 cm(-1), kappa = 0.99, lambda = -142 cm(-1), Delta = -562 cm(-1). For 2 and 3, magnetic data were fitted to the theoretical equations derived from the isotropic Hamiltonian: H = -JS(1)S(2). The best fit parameters were g = 2.050(1), J = -17.51(1) and P = 0.01(2) for 2 and g = 2.068(5), J = -20.07(8) and P = 0.015(4) for 3, respectively (P takes into account the amount of paramagnetic impurity). In order to explain the weak magnetic interaction between copper(II) ions mediated by the bipyrimidine bridging ligand in 3, we have carried out electronic structure calculations based on the density functional theory (DFT).  相似文献   

15.
Three 4.8 nm isostructural{M72}(M=Co for CIAC-128,Ni for CIAC-129,Fe for CIAC-130) metal-organic polyhedra(MOPs) are constructed by eighteen M4-p-tert-butylthiacalix[4]arene (M4-TC4A) units bridged via sixteen four-connected 5,5′-(1H-1,2,4-triazole-3,5-diyl) diisophthalic acid (H4TADIPA) linkers.These MOPs are featured with a rarely reported concave coordination cage,which can be simplified as a squeezed double-decker hexagonal prism pressed from the top and bottom hexagonal faces.Furthermore,CIAC-128,CIAC-129 and CIAC-130 are the highest nuclearity discrete clusters of Co,Ni and Fe reported so far.CIAC-128 has higher separation selectivity of C3H8 than CH4 under ambient conditions,and also exhibits separation selectivity for C2H6/CH4,C2H2/CH4,and C2H4/CH4.In addition,CIAC-128 can provide the cavity for the confined synthesis of noble metal nanoclusters such as Pd nanoclusters and the resulting Pd@CIAC-128 hybrids show higher electrocatalytic activity than commercial Pt/C towards hydrogen evolution reaction (HER).  相似文献   

16.
Two new isostructural tellurites, Pb(4)Te(6)M(10)O(41) (M = Nb(5+) or Ta(5+)), have been synthesized by standard solid-state techniques using PbO, Nb(2)O(5) (or Ta(2)O(5)), and TeO(2) as reagents. The structures of Pb(4)Te(6)Nb(10)O(41) and Pb(4)Te(6)Ta(10)O(41) were determined by single-crystal and powder X-ray diffraction. The materials exhibit a three-dimensional framework consisting of layers of corner-shared NbO(6) octahedra connected by TeO(3) and PbO(6) polyhedra. The Nb(5+), Te(4+), and Pb(2+) cations are in asymmetric coordination environments attributable to second-order Jahn-Teller effects. The Nb(5+) cations undergo an intraoctahedral distortion either toward a face or a corner, whereas the Te(4+) and Pb(2+) cations are in distorted environments attributable to their lone pair. In addition, the TeO(3) polyhedra strongly influence the direction of the Nb(5+) intraoctahedral distortion. Infrared and Raman spectroscopy, thermogravimetric analysis, and dielectric measurements are also presented. Crystal data: Pb(4)Te(6)Nb(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.412(3) A, b = 20.114(3) A, c = 7.5008(10) A, beta = 99.630(4) degrees, V = 3482.4(8) A(3), and Z = 4; Pb(4)Te(6)Ta(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.340(8) A, b = 20.068(5) A, c = 7.472(2) A, beta = 99.27(3) degrees, V = 3453.8(2) A(3), and Z = 4.  相似文献   

17.
Two new isostructural mixed-metal phosphates, BaTeMO(4)(PO(4)) (M = Nb(5+) or Ta(5+)), have been synthesized as bulk phase powders and single crystals by standard solid-state techniques using BaCO(3), TeO(2), Nb(2)O(5) (or Ta(2)O(5)), and NH(4)H(2)PO(4) as reagents. The materials have novel layered crystal structures consisting of [M(5+)O(6/2)](-) corner-sharing octahedral chains that are connected to [Te(4+)O(4/2)](0) polyhedra and [P(5+)O(2/1)O(2/2)](-) tetrahedra. The Ba(2+) cations reside between the layers and maintain charge balance. The Te(4+) cations are in asymmetric coordination environments attributable to their lone pairs. The Nb(5+) distorts along the local C(4) direction of its octahedron resulting in a "short-long-short-long" Nb-O-Nb bond motif. The Nb(5+) cation displaces away from the oxide ligands that are bonded to Te(4+) or P(5+) cations, attributable to the structural rigidity of the TeO(4) and PO(4) polyhedra. Thus, the TeO(4) and PO(4) polyhedra support and reinforce the intraoctahedral distortion observed within the NbO(6) octahedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and ion-exchange experiments are also presented. Crystal data: BaTeNbO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.7351(9) A, b = 7.5540(10) A, c = 27.455(4) A, V = 1396.8(3) A(3), and Z = 8; BaTeTaO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.734(2) A, b = 7.565(3) A, c = 27.435(9) A, V = 1372.6(8) A(3), and Z = 8.  相似文献   

18.
Luminescent [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O), which forms from aqueous solutions of [(NH(3))(4)Pt]Cl(2) and K[Au(CN)(2)], crystallizes with extended chains of the two ions with multiple close Pt...Au (3.2804(4) and 3.2794(4) A) and Au...Au (3.2902(5), 3.3312(5), and 3.1902(4) A) contacts. Nonluminescent [(NH(3))(4)Pt][Ag(CN)(2)](2).1.4(H(2)O) is isostructural with [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O). Treatment of [(NH(3))(6)Ni]Cl(2) with K[Au(CN)(2)] forms [(NH(3))(2)Ni][Au(CN)(2)](2) in which the [Au(CN)(2)](-) ions function as nitrile ligands toward nickel, which assumes a six-coordinate structure with trans NH(3) ligands. The [Au(CN)(2)](-) ions self-associate into linear columns with close Au...Au contacts of 3.0830(5) A, and pairs of gold ions in these chains make additional but longer (3.4246(5) A) contacts with other gold ions.  相似文献   

19.
[Pentakis[(triphenylphosphine)gold(I)]ammonium(2+)] bis[(tetrafluoroborate)(1-)] was prepared from [tetrakis[(triphenylphosphine)gold(I)]-ammonium(1+)] [tetrafluoroborate(1-)] and [(triphenylphosphine)gold(I)] tetrafluoroborate in hexamethyl phosphoric triamide and tetrahydrofuran at 20 degrees C in 53% yield and crystallized from dichloromethane as the new solvate [[(Ph3P)Au]5N]3 [BF4]6 [CH2Cl2]4. The crystal structure of this product has been determined by single-crystal X-ray methods [monoclinic, P2(1/n), a = 34.200(3), b = 15.285(1), c = 53.127(3) A, beta = 107.262(2) degrees, V = 26521(3) A3, Z = 12, at 153 K]. The lattice contains three independent trinuclear dications that have no crystallographically imposed symmetry and are mutually similar in their molecular structure. The geometry of the [Au5N] core with pentacoordinate nitrogen atoms is intermediate between trigonal-bipyramidal and square pyramidal with severe distortions to minimize the Au-Au distances along some of the edges of the polyhedra. The three structures are thus different from that found previously in the tetrahydrofuran solvate [[(Ph3P)-Au]5N](BF4)2(C4H8O)2, where the geometry of the same trinuclear dication is closer to the trigonal-bipyramidal reference model. The new results are discussed in the light of the structures of tetra(gold)ammonium cations in salts of the type [[(Ph3P)Au]4N]+X- and of related tetra-, penta-, and hexacoordinate poly(gold)phosphonium, -arsonium, -sulfonium, and -selenonium cations.  相似文献   

20.
The A(2)M(4)U(6)Q(17) compounds Rb(2)Pd(4)U(6)S(17), Rb(2)Pd(4)U(6)Se(17), Rb(2)Pt(4)U(6)Se(17), Cs(2)Pd(4)U(6)S(17), Cs(2)Pd(4)U(6)Se(17), and Cs(2)Pt(4)U(6)Se(17) were synthesized by the high-temperature solid-state reactions of U, M, and Q in a flux of ACl or Rb(2)S(3). These isostructural compounds crystallize in a new structure type, with two formula units in the tetragonal space group P4/mnc. This structure consists of a network of square-planar MQ(4), monocapped trigonal-prismatic UQ(7), and square-antiprismatic UQ(8) polyhedra with A atoms in the voids. Rb(2)Pd(4)U(6)S(17) is a typical semiconductor, as deduced from electrical resistivity measurements. Magnetic susceptibility and specific heat measurements on single crystals of Rb(2)Pd(4)U(6)S(17) show a phase transition at 13 K, the result either of antiferromagnetic ordering or of a structural phase transition. Periodic spin-polarized band structure calculations were performed on Rb(2)Pd(4)U(6)S(17) with the use of the first principles DFT program VASP. Magnetic calculations included spin-orbit coupling. With U f-f correlations taken into account within the GGA+U formalism in calculating partial densities of states, the compound is predicted to be a narrow-band semiconductor with the smallest indirect and direct band gaps being 0.79 and 0.91 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号