首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work shows results obtained from the incorporation of a soot model into a combined Large Eddy Simulation and Conditional Moment Closure approach to modelling turbulent non-premixed flames. Soot formation is determined via the solution of two transport equations for soot mass fraction and particle number density, where acetylene is employed as the incipient species responsible for soot nucleation. The concentrations of the gaseous species are calculated using a Rate-Controlled Constrain Equilibrium approach to reduce the number of species to solve from a detailed gas-phase kinetic scheme involving 63 species. The study focuses on the influence of differential diffusion of soot particles on soot volume fraction predictions. The results of calculations are compared with experimental data for atmospheric methane flames, Overall, the study demonstrates that the model, when used in conjunction with a representation of differential diffusion effects, is capable of predicting soot formation at a fundamental level in the turbulent non- premixed flames considered.  相似文献   

2.
A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is concluded that additional fuel mixture fraction and velocimetry studies are required to examine whether processes such as the degree of partial-premixedness close to the burner exit plane, the velocity field and the turbulence field have a strong correlation with the curvature characteristics of the investigated flames.  相似文献   

3.
Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field–flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.  相似文献   

4.
Confined short turbulent swirling premixed and non-premixed methane and heptane spray flames stabilized on an axisymmetric bluff body in a square enclosure have been examined close to the blow-off limit and during the extinction transient with OH* chemiluminescence and OH-PLIF operated at 5 kHz. The comparison of flames of different canonical types in the same basic aerodynamic field allows insights on the relative blow-off behaviour. The flame structure has been examined for conditions increasingly closer to blow-off. The premixed flame was seen to change from a cylindrical shape at stable burning condtions, with the flame brush closing across the flow at conditions close to blow-off. The PLIF images show that for the gaseous non-premixed flame, holes appear along the flame sheet with increasing frequency as the blow-off condition is approached, while the trend is less obvious for the spray flame. Non-premixed and spray flames showed randomly-occurring lift-off, which is further evidence of localised extinction. The mean lift-off height increased with increasing fuel jet velocity and decreased with increasing air velocity and approaches zero (i.e. the flame is virtually attached) just before the blow-off condition, despite the fact that more holes were evident in the flame sheet as extinction was approached. It was found that the average duration of the blow-off event, when normalised with the characteristic flow time d/U b (d being the bluff-body diameter and U b the bulk velocity) was in the range 9–38 with the spray flame extinction lasting a shorter time than the gaseous flames. Finally, it was found that correlations based on a Damköhler number collapse the blow-off velocity data for all flames with reasonable accuracy. The results can help the development of advanced turbulent combustion models.  相似文献   

5.
Experiments are carried out on partially premixed turbulent flames stabilized in a conical burner. The investigated gaseous fuels are methane, methane diluted with nitrogen, and mixtures of CH4, CO, CO2, H2 and N2, simulating typical products from gasification of biomass, and co-firing of gasification gas with methane. The fuel and air are partially premixed in concentric tubes. Flame stabilization behavior is investigated and significantly different stabilization characteristics are observed in flames with and without the cone. Planar laser induced fluorescence (LIF) imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are carried out to gain further understanding of the flame/flow interaction in the cone. The data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities.  相似文献   

6.
Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements were also taken where the fuel flow rate was held constant to compare with earlier work. These measurements show that overall flame temperature decreases with increasing pressure, with increasing pressure the position of peak temperature shifts to the tip of the flame, and the temperatures measured were approximately 10% lower than those calculated assuming equilibrium and neglecting radiation.  相似文献   

7.
To investigate the mechanisms leading to sustained thermoacoustic oscillations in swirl flames, a gas turbine model combustor was equipped with an optically accessible combustion chamber allowing the application of various laser techniques. The flame investigated was a swirled CH4/air diffusion flame (thermal power 10 kW, global equivalence ratio φ = 0.75) at atmospheric pressure which exhibited self-excited thermoacoustic oscillations at a frequency of 290 Hz. In separate experiments, the flow velocities were measured by laser Doppler velocimetry, the flame structures and heat release rates by planar laser-induced fluorescence of CH and by OH chemiluminescence, and the joint probability density functions of the major species concentrations, mixture fraction, and temperature by laser Raman scattering. All measurements were performed in a phase-locked mode, i.e., triggered with respect to the oscillating pressure level measured by a microphone. The results revealed large periodic variations of all measured quantities and showed that the heat release rate was correlated with the degree of mixing of hot products with unburned fuel/air mixtures before ignition. The thermal expansion of the reacting gases had, in turn, a strong influence on the flow field and induced a periodic motion of the inner and outer recirculation zones. The combination of all results yielded a deeper understanding of the events sustaining the oscillations in the flame under investigation. The results also represent a data base that can be used for the validation and improvement of CFD codes.  相似文献   

8.
Phase-resolved measurements of the velocity field in acoustically forced, flickering laminar co-flowing methane/air diffusion flames were made. Identical flames have been studied extensively in the past in order to characterize the effects of the vortical structures responsible for the flicker on the flame structure, but the initial velocity perturbation and the velocity fields have not been reported previously. Phase-locked measurements of the instantaneous two-dimensional velocity field at ten phases within a full excitation cycle were made using particle image velocimetry. The velocity measurements were complemented by phase-resolved shadowgraphs recorded in the vicinity of the flame base. Measurements are reported for the two forcing conditions that have most often been studied for this burner. When integrated with the results of previous studies, these measurements provide a clearer picture of the interactions between the buoyancy-induced vortical structures and the flame sheets, as well as providing the initial conditions required for realistic modeling of these flames.  相似文献   

9.
An inverted step burner has been designed in which a steady ethylene, recirculating flame is established. The burner was housed within a vertical wind tunnel. Laser extinction was used to determine the soot volume fraction in the recirculation zone. Temperatures were determined by a thermocouple. One-dimensional laser-Doppler velocity (LDV) measurements were obtained with a frequency shift system to measure the flow field in the recirculating flame. All the measurements were obtained for a fixed ethylene flow rate; a low and a high velocity in the approach flow were investigated.

Variation in air velocity changed the structure of the flame. At low flow conditions, the soot loading has two distinct peaks at the lower and upper edge of the flame. At the higher air velocity, the upper part of the flame has a much lower relative soot loading as a result of the shorter residence time. The location of the peak values of the soot also changed with the residence time. The peak temperature was of the order of 1600°C. The soot loading was low in the regions of high temperature and relatively high in regions of low temperatures, reflecting the important role of thermal radiation in these luminous flames. The LDV measurements were used to reveal the nature of the flow field. The local soot loading in the flame increased as the approach flow velocity increased; this result suggests the possibility that soot may continue to grow when it is recirculated to regions of growth in a flame.  相似文献   


10.
The spatial resolution of a Chemiluminescence Sensor, based on focused Cassegrain optics, to detect the location of the reaction zone and heat-release rate in a model gas turbine combustor is reported. The sensor measures simultaneously the chemiluminescent intensities from OH* and CH* excited radicals in flames in order to obtain information on the local flame characteristics. The spatial resolution was evaluated by a combined theoretical and experimental study in laminar and turbulent flames and was supported by detailed chemistry calculations, including the chemiluminescent species, of unstrained one-dimensional flames. The experimental study involved simultaneous measurements of chemiluminescence with the sensor and laser-based reaction rate imaging, using the product of OH and CH2O radicals obtained from planar laser-induced fluorescence (PLIF), and OH PLIF for the location of the reaction zone. The study quantified the influence of flame shape and dimensions and the direction of traverse of the focal region of the sensor through the flames on the spatial resolution, thereby identifying the limitations and optimising the applicability of the sensor. The sensor was used to obtain local time-dependent measurements of heat-release and equivalence ratio of a reacting mixture, based on the chemiluminescent intensity ratio of OH*/CH*, in a swirl-stabilised model gas turbine combustor and quantified the degree of air–fuel premixedness, probability of reaction and power spectra of pressure and chemiluminescent intensity fluctuations in two unsteady flames.  相似文献   

11.
Particle image velocimetry (PIV) was used to measure velocity fields inside and around oscillating methane-air diffusion flames with a slot fuel orifice. PIV provided velocity and directional information of the flow field comprised of both the flame and air. From this, information on flow paths of entrained air into the flame were obtained and visualized. These show that at low fuel flow rates for which the oscillations were strongest, the responsible mechanism for the oscillating flow appeared to be the repetitive occurrence of flame quenching. PIV findings indicated that quenching appears to be associated primarily with air entrainment. Velocity was found to be considerably larger in regions where quenching occurred. The shedding of vortices in the shear layer occurs immediately outside the boundary of the flame envelope and was speculated to be the primary driving force for air entrainment.  相似文献   

12.
This paper reports on experimental investigations of turbulent flame-wall interaction (FWI) during transient head-on quenching (HOQ) of premixed flames. The entire process, including flame-wall approach and flame quenching, was analyzed using high repetition rate particle image velocimetry (PIV) and simultaneous flame front tracking based on laser-induced fluorescence (LIF) of the OH molecule. The influence of convection upon flame structures and flow fields was analyzed qualitatively and quantitatively for the fuels methane (CH4) and ethylene (C2H4) at ? = 1. For this transient FWI, flames were initialized by laser spark ignition 5 mm above the burner nozzle. Subsequently, flames propagated against a steel wall, located 32 mm above the burner nozzle, where they were eventually quenched in the HOQ regime due to enthalpy losses. Twenty ignition events were recorded and analyzed for each fuel. Quenching distances were 179 μm for CH4 and 159 μm for C2H4, which lead by nondimensionalization with flame thickness to Peclet numbers of 3.1 and 5.5, respectively. Flame wrinkling and fresh gas velocity fluctuations proved flame and flow laminarization during wall approach. Velocity fluctuations cause flame wrinkling, which is higher for CH4 than C2H4 despite lower velocity fluctuations. Lewis number effects explained this phenomenon. Results from flame propagation showed that convection dominates propagation far from the wall and differences in flame propagation are related to the different laminar flame speeds of the fuels. Close to the wall flames of both fuels propagate similarly, but experimental results clearly indicate a decrease in intrinsic flame speed. In general, the experimental results are in good agreement with other experimental studies and several numerical studies, which are mainly based on direct numerical simulations.  相似文献   

13.
Tomographic PIV measurements in a turbulent lifted jet flame   总被引:1,自引:0,他引:1  
Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.  相似文献   

14.
Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated. Received: 5 November 1999/Accepted: 29 April 2000  相似文献   

15.
This is an experimental study of soot formation in precessing jet flames. The Mie diagnostic technique was implemented to provide qualitative visualisation of the zones of soot formation. A range of conditionally sampled experiments was carried out. The characteristic Reynolds number based on the nozzle diameter, was varied from 4329 to 11223 and the Strouhal number based on the nozzle diameter, was varied from 0.0042 to 0.0245. The nozzle diameter was fixed at 5 mm and the jet exit angle at 45 deg. Experimental data were collected and used to show the tendencies in the formation of soot at different experimental conditions. It was found that the relative soot intensity increases with increase in both Re and St numbers. The instantaneous images reveal that soot is predominantly formed in sheets of varying thickness. Very little soot is observed in the near nozzle region, which is consistent with the idea that the formation of soot in appreciable quantities is kinetically limited. Readily observable are very broad regions of low signal spanning much of the flame. These broad regions are more prevalent in the high St number flames where strain rates are lower and residence times are longer. The experimental results support the hypothesis that low strain in a diffusion flame promotes soot formation and high emissivity (i.e., soot formation correlates inversely with flame strain). An erratum to this article can be found at  相似文献   

16.
An investigation of the leading edge characteristics in lifted turbulent methane-air (gaseous) and ethanol-air (spray) diffusion flames is presented. Both combustion systems consist of a central nonpremixed fuel jet surrounded by low-speed air co-flow. Non-intrusive laser-based diagnostic techniques have been applied to each system to provide information regarding the behavior of the combustion structures and turbulent flow field in the regions of flame stabilization. Simultaneous sequential CH-PLIF/particle image velocimetry and CH-PLIF/Rayleigh scattering measurements are presented for the lifted gaseous flame. The CH-PLIF data for the lifted gas flame reveals the role that ``leading-edge' combustion plays as the stabilization mechanism in gaseous diffusion flames. This phenomenon, characterized by a fuel-lean premixed flame branch protruding radially outward at the flame base, permits partially premixed flame propagation against the incoming flow field. In contrast, the leading edge of the ethanol spray flame, examined using single-shot OH-PLIF imaging and smoke-based flow visualization, does not exhibit the same variety of leading-edge combustion structure, but instead develops a dual reaction zone structure as the liftoff height increases. This dual structure is a result of the partial evaporation (hence partial premixing) of the polydisperse spray and the enhanced rate of air entrainment with increased liftoff height (due to co-flow). The flame stabilizes in a region of the spray, near the edge, occupied by small fuel droplets and characterized by intense mixing due to the presence of turbulent structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The current study utilizes digital image sequences of flames to better understand the blowout phenomenon. Methane flames are studied near blowout conditions to determine if the disappearance of the diffusion flame prior to extinguishment signifies the leading edge of the reaction zone reaching the lean-limit. Various concentrations of nitrogen are used to dilute methane flames. The axial position of the flames is compared with the calculated position of the lean flammability limit to determine the role of the diffusion flame. The blowout limits of these flames are established and a blowout parameter is empirically determined from the data. Results from flames in co-flow show agreement with the blowout parameter previously published; however, the analysis shows that, the disappearance of the bulk diffusive reaction zone occurs at the lean flammability limit and is an accurate predictor of blowout for diluted and non-diluted methane flames.  相似文献   

18.
A non-buoyant laminar diffusion flame has been studied using laser-induced incandescence (LII) and light extinction measurements. The present flame is established within a laminar boundary layer, producing a complex three-dimensional flow field. This produces a three-dimensional soot concentration field. LII can provide spatially resolved three-dimensional concentration measurements of the soot field, nevertheless it requires calibration. Calibration needs to be conducted under identical conditions to the actual measurements, given the complex interaction between the flow field and soot production. This study reports a calibration procedure that allows the determination of a calibration constant correlating LII signal to soot volume fraction. The potential sources of error are identified and quantified.  相似文献   

19.
This paper describes an experimental study investigating the non-linear response of lean premixed air/ethylene flames to strong inlet velocity perturbations of two frequencies. The combustor has a centrally-placed bluff body and a short quartz section. The annulus between the bluff body and the flow tube, which also housed the acoustic pressure transducers, allowed the reactants into the combustor. The inlet flow was perturbed using loudspeakers. High speed laser tomography, OH* chemiluminescence and OH Planar Laser Induced Fluorescence (PLIF) have been used for flow visualization, heat release and flame surface density (FSD) measurements respectively. The heat release fluctuations increased initially linearly with inlet velocity amplitude for a single frequency forcing, with saturation occurring after forcing amplitudes of around 15% of the bulk velocity, which was found to occur due to vortex roll up and subsequent flame annihilation. The introduction of energy at the second frequency (i.e, the harmonic) was found to change the vortex formation and shedding frequency, depending on the level of forcing. This resulted in a non-linear flame response transfer function (defined as the amplitude of unsteady heat release divided by the amplitude of velocity perturbation at the fundamental) whose amplitude depended greatly on the amount of harmonic content present in the perturbations. The introduction of higher harmonics reduced the flame annihilation events, which are responsible for saturation, thus reducing non-linearity in the amplitude dependence of the flame response. These results were further verified using sequential time-resolved OH PLIF measurements. The findings from this study suggest that the acoustic response of the flame was mostly due to flame area variation effected by modulation of the annular jet and evolution of the shear layers.  相似文献   

20.
One of the most promising methods for reducing NO x emissions of jet engines is the lean combustion process. For realization of this concept the percentage of air flowing through the combustor dome has to be drastically increased, which implies high volume fluxes in the primary zone of the combustion chamber and represents a substantial challenge in regard to the flame stabilization. Swirl motion is thus applied to the air flux by the swirl generator and decisively contributes to the flame stabilization. The current paper reviews an atmospheric investigation of a burner configuration in regard to the weak extinction limit, comprising a confined non-premixed swirl-stabilized flame. The burner can be supplied with either kerosene or after a small adaption with natural gas (methane). Therefore, a comparison of a kerosene-fuelled flame (spray flame) to a natural gas fuelled one (methane flame) can be performed. Both are realized by almost identical burner configuration and at identical conditions. The main idea of this work is to align the stability characteristics of both flames by means of similarity. However, fundamental differences regarding the flame structures of the flames are detected through in-flame measurements. This determines the limits of the current approach and motivates an appropriate choice of flame modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号