首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lectin‐functionalized monolithic columns were prepared within polyether ether ketone (PEEK) columns (150 × 4.6 mm id) via transition metal‐catalyzed ring‐opening metathesis polymerization of norborn‐2‐ene (NBE) and trimethylolpropane‐tris(5‐norbornene‐2‐carboxylate) (CL) using the first‐generation Grubbs initiator RuCl2(PCy3)2(CHPh) (1, Cy = cyclohexyl) in the presence of a macro‐ and microporogen, i.e. of 2‐propanol and toluene. Postsynthesis functionalization was accomplished via in situ grafting of 2,5‐dioxopyrrolidin‐1‐yl‐bicyclo[2.2.1]hept‐5‐ene‐2‐carboxylate to the surface of the monoliths followed by reaction with α,ω‐diamino‐poly(ethyleneglycol). The pore structure of the poly(ethyleneglycol)‐ derivatized monoliths was investigated by electron microscopy and inverse‐size exclusion chromatography, respectively. The amino‐poly(ethyleneglycol) functionalized monolithic columns were then successfully used for the immobilization of lectin from Lens culinaris hemagglutinin. The thus prepared lectin‐functionalized monoliths were applied to the affinity chromatography‐based purification of glucose oxidase. The binding capacity of Lens culinaris hemagglutinin‐immobilized monolithic column for glucose oxidase was found to be 2.2 mg / column.  相似文献   

2.
Silica monolithic columns suitable for implementation on microchips have been evaluated by ion-exchange capillary electrochromatography. Two different silica monoliths were created from the alkyl silane, tetramethyl orthosilicate (TMOS), by introducing a water-soluble organic polymer, poly(ethylene oxide) (PEO), with varying molecular weights into the prehydrolyzed sol. Silica monoliths created using 10 kDa PEO were found to have a much more closed gel structure with a smaller percentage of pores in the microm size range than gels created using 100 kDa PEO. Additionally, the size of the mesopores in the 100 kDa PEO monolith was 5 nm, while those in the 10 kDa PEO gel were only 3 nm. This resulted in a strong dependence of the electroosmotic flow (EOF) on the ionic strength of the background electrolyte, with substantial pore flow through the nm size pores observed in the 10 kDa PEO gel. The chromatographic performance of the monolithic columns was evaluated by ion-exchange electrochromatography, with ion-exchange sites introduced via dynamic coating with the cationic polymer, poly(diallyldimethylammonium chloride) (PDDAC). Separating a mixture of inorganic anions, the 10 kDa PEO monolithic columns showed a higher effective capacity than the 100 kDa PEO column.  相似文献   

3.
Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35 %, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC4D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of <15 % (averaged for several metal ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.  相似文献   

4.
Ou J  Zhang Z  Lin H  Dong J  Wu M  Zou H 《Electrophoresis》2012,33(11):1660-1668
Hydrophobic organic-inorganic hybrid monolithic columns were synthesized via thermally initiated free radical polymerization with the confines of 75 μm id capillary using a polyhedral oligomeric silsesquioxane (POSS) reagent containing eight or more methacrylate groups as the crosslinker. Three organic functional monomers, butyl methacrylate (BuMA), lauryl methacrylate (LMA) and methacrylic acid (MAA), were selected and copolymerized with the POSS in the presence of 1-propanol and 1,4-butanediol to prepare the poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths, respectively. The 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was copolymerized as ionizable monomer into the poly(POSS-co-BuMA) and poly(POSS-co-LMA) for the generation of EOF in capillary electrochromatography (CEC). A hybrid poly(POSS-co-LMA-co-MAA) monolith was also similarly prepared by copolymerizing ternary monomers of POSS, LMA, and MAA, and compared with poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths. The resulting four kinds of POSS-contained hybrid monoliths exhibited good permeability and mechanical stability. Their column efficiencies were evaluated by the separation of alkylbenzene homologues and polar compounds in CEC. The results indicated that the highest efficiencies of 194,100 and 102,100 theoretical plates per meter for thiourea and benzene were obtained on the poly(POSS-co-LMA-co-MAA) monolith. Additionally, the poly(POSS-co-LMA-co-MAA) monolith exhibited better selectivity for separation of polar compounds than those of other hybrid monoliths.  相似文献   

5.
Monolithic stationary phases based on poly(ethylene glycol) diacrylates for capillary electrochromatography were developed. Several poly(ethylene glycol) diacrylates (Mn 250, 575, and 700) were used as single monomers and the resulting columns were carefully compared. Methanol and ethyl ether were selected as porogenic solvents, and in all cases ultraviolet radiation was selected as initiation method to prepare polymeric monoliths. The influence of the monomer chain length and ratio monomer/porogen on the morphological and electrochromatographic properties of the resulting monoliths was investigated. Several families of compounds with different polarity (alkyl benzenes, organophosphorous pesticides, benzoic acid derivatives, and sulfonamides) were selected to evaluate the performance of the fabricated monolithic columns. The best results were obtained for poly(ethylene glycol) diacrylate 700 monoliths affording efficiencies of 144 000 plates/m for retained polar aromatic small molecules and excellent reproducibility in column preparation (RSD values below 2.5%).  相似文献   

6.
A simple capillary flow porometer (CFP) was assembled for through-pore structure characterization of monolithic capillary liquid chromatography columns in their original chromatographic forms. Determination of differential pressures and flow rates through dry and wet short capillary segments provided necessary information to determine the mean diameters and size distributions of the through-pores. The mean through-pore diameters of three capillary columns packed with 3, 5, and 7 μm spherical silica particles were determined to be 0.5, 1.0 and 1.4 μm, with distributions ranging from 0.1 to 0.7, 0.3 to 1.1 and 0.4 to 2.6 μm, respectively. Similarly, the mean through-pore diameters and size distributions of silica monoliths fabricated via phase separation by polymerization of tetramethoxysilane (TMOS) in the presence of poly(ethylene glycol) (PEG) verified that a greater number of through-pores with small diameters were prepared in columns with higher PEG content in the prepolymer mixture. The CFP system was also used to study the effects of column inner diameter and length on through-pore properties of polymeric monolithic columns. Typical monoliths based on butyl methacrylate (BMA) and poly(ethylene glycol) diacrylate (PEGDA) in capillary columns with different inner diameters (i.e., 50–250 μm) and lengths (i.e., 1.5–3.0 cm) were characterized. The results indicate that varying the inner diameter and/or the length of the column had little effect on the through-pore properties. Therefore, the through-pores are highly interconnected and their determination by CFP is independent of capillary length.  相似文献   

7.
Ultrashort monolithic columns (disks) were thoroughly studied as efficient stationary phases for precipitation–dissolution chromatography of synthetic polymers. Gradient elution mode was applied in all chromatographic runs. The mixtures of different flexible chain homopolymers, such as polystyrenes, poly(methyl methacrylates), and poly(tert‐butylmethacrylates) were separated according to their molecular weights on both commercial poly(styrene‐co‐divinylbenzene) disks (12 id × 3 mm and 5 × 5 mm) and lab‐made monolithic columns (4.6 id × 50 mm) filled with supports of different hydrophobicity. The experimental conditions were optimized to reach fast and highly efficient separation. It was observed that, similar to the separation of monoliths of other classes of (macro)molecules (proteins, DNA, oligonucleotides), the length of column did not affect the peak resolution. A comparison of the retention properties of the poly(styrene‐co‐divinylbenzene) disk‐shaped monoliths with those based on poly(lauryl methacrylate‐co‐ethylene dimethacrylate), poly(butyl methacrylate‐co‐ethylene dimethacrylate), and poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) supports demonstrated the obvious effect of surface chemistry on the resolution factor. Additionally, the results of the discussed chromatographic mode on the fast determination of the molecular weights of homopolymers used in this study were compared to those established by SEC on columns packed with sorbent beads of a similar nature to the monoliths.  相似文献   

8.
Okanda FM  El Rassi Z 《Electrophoresis》2006,27(5-6):1020-1030
In this report, microcolumn separation schemes involving monolithic capillary columns with immobilized lectins, and relevant to nanoglycomics/nanoproteomics were introduced. Positive and neutral monoliths based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) were designed for achieving lectin affinity chromatography (LAC) by nano-LC and CEC. The positive monoliths (i.e., monoliths with cationic sites) afforded relatively high permeability in nano-LC but lack predictable EOF magnitude and direction, while neutral monoliths provided a good compromise between reasonable permeability in nano-LC and predictable EOF in CEC. Lectin affinity nano-LC permitted the enrichment of classes of different glycoproteins having similar N-glycans recognized by the immobilized lectin, whereas lectin affinity CEC provided the simultaneous capturing and separation of different glycoproteins due to differences in charge-to-mass ratio. Also, this investigation demonstrated for the first time the coupling of lectin capillary columns in series (i.e., tandem columns) for enhanced separation of glycoproteins by LAC using the CEC modality. Furthermore, in the coupled columns format, glycoforms of a given glycoprotein were readily separated.  相似文献   

9.
This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.  相似文献   

10.
Xin P  Shen Y  Qi L  Yang G  Chen Y 《Talanta》2011,85(2):1180-1186
A novel type of poly(N-isopropylacrylamide) grafted E-51 epoxy-based monoliths in a 100 mm × 4.6 mm I.D. stainless steel column with well-controlled three-dimensional skeletal structures has been prepared and proposed for the separation of proteins. The grafted PNIPAAm chain via surface-initiated atom transfer radical polymerization was successfully performed. The proposed method provided a new route to modify the E-51 epoxy-based monoliths for widening their applications. Meanwhile, the temperature and the salt concentration responses of the grafted monolithic columns were investigated. Under the salt gradient, six proteins were well separated in hydrophobic interaction mode. Moreover, for further confirming the application of the prepared monolith was meaningful for proteome analysis in actual system, the separation of human serum sample was performed.  相似文献   

11.
Monolithic capillary columns with surface bound lectin affinity ligands were introduced for performing lectin affinity chromatography (LAC) by nano-liquid chromatography (nano-LC). Two kinds of polymethacrylate monoliths were prepared, namely poly(glycidyl methacrylateco-ethylene dimethacrylate) and poly(glycidyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) to yield neutral and cationic macroporous polymer, respectively. Two lectins including concanavalin (Con A) and wheat germ agglutinin (WGA) were immobilized onto the monolithic capillary columns. The neutral monoliths with immobilized lectins exhibited lower permeability under pressure driven flow than the cationic monoliths indicating that the latter had wider flow-through pores than the former. Both types of monoliths with immobilized lectins exhibited strong affinity toward particular glycoproteins and their oligosaccharide chains (i.e., glycans) having sugar sequences recognizable by the lectin. Due to the strong binding affinity, the monoliths with surface bound lectins allowed the injection of relatively large volume (i.e., several column volumes) of dilute samples of glycoproteins and glycans thus allowing the concentration of the glycoconjugates and their subsequent isolation and detection at low levels (approximately 10(-8) M). To further exploit the lectin monoliths in the isolation of glycoconjugates, two-dimensional separation schemes involving LAC in the first dimension and reversed-phase nano-LC in the second dimension were introduced. The various interrelated methods established in this investigation are expected to play a major role in advancing the sciences of "nano-glycomics".  相似文献   

12.
Porous poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monoliths were synthesized via thermally initiated free-radical polymerization in confines of surface-vinylized glass columns (150 mm × 3 mm i.d.) and applied to the reversed-phase separation of low-molecular-weight aromatic compounds. In order to compensate for the polymer shrinkage during the synthesis and prevent the monolith from detachment from the column wall, polymerization was conducted under nitrogen pressure. The reaction proceeded at 60°C for 22 h. 2,2'-Azo-bis-isobutironitrile was used as the initiator and 1-dodecanol was used as the porogen. A series of monoliths with different monomer ratios were obtained. All the monoliths had high specific surface areas ranging from 370 to 490 m(2)/g. In the studied range of monomer mixture compositions, the mechanical stability of the stationary phase in water/acetonitrile eluents was found to be high enough and practically insensitive to the fraction of 2-hydroxyethyl methacrylate (HEMA). Increasing the molar fraction of HEMA from 10.5% to 14.7% resulted in the decrease of column permeability by two orders of magnitude (from 1.1×10(-12) to 1.8×10(-14) m(2)) and led to weaker retention of alkylbenzenes. The higher HEMA content was shown to reduce the plate height of the columns in the separation of small molecules from 160-490 μm to 40-76 μm. This was attributed mainly to the decrease of the domain size of the monoliths leading to lower eddy dispersion and mass transfer resistance in the column.  相似文献   

13.
Two novel polymeric monoliths for anion-exchange capillary liquid chromatography of proteins were prepared in a single step by a simple photoinitiated copolymerization of 2-(diethylamino)ethyl methacrylate and polyethylene glycol diacrylate (PEGDA), or copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and PEGDA, in the presence of selected porogens. The resulting monoliths contained functionalities of diethylaminoethyl (DEAE) as a weak anion-exchanger and quaternary amine as a strong anion-exchanger, respectively. An alternative weak anion-exchange monolith with DEAE functionalities was also synthesized by chemical modification after photoinitiated copolymerization of glycidyl methacrylate (GMA) and PEGDA. Important physical and chromatographic properties of the synthesized monoliths were characterized. The dynamic binding capacities of the three monoliths (24 mg/mL, 56 mg/mL and 32 mg/mL of column volume, respectively) were comparable or superior to values that have been reported for various other monoliths. Chromatographic performance was also similar to that provided by a modified poly(GMA-ethylene glycol dimethacrylate) monolith. Separation of standard proteins was achieved under gradient elution conditions using these monolithic columns. Peak capacities of 34, 58 and 36 proteins were obtained with analysis times of 20–30 min. This work represents a successful attempt to prepare functionalized monoliths via direct copolymerization of monomers with desired functionalities. Compared to earlier publications, additional surface modifications were avoided and the PEGDA crosslinker helped to improve the biocompatibility of the monolithic backbone.  相似文献   

14.
Two types of macroporous organic polymer monoliths based on glycidyl methacrylate (GMA), 4-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) were prepared inside stainless-steel tubes. Azide functionalities were firstly introduced on the surfaces of poly(GMA-co-DVB) and poly(VBC-co-DVB) monoliths to provide reactive sites for click chemistry. With the application of copper(I)-catalyzed (3 + 2) azide-alkyne cycloaddition, an in-column click-modification approach for covalent attachment of long alkyl chains onto polymer monoliths was developed. The column morphology and surface chemistry of the fabricated monolithic columns were characterized by the scanning electron microscopy, mercury intrusion porosimeter, Fourier transform infrared spectroscopy, and elemental analyses, respectively. The chromatographic performances of the “clicked” stationary phases were demonstrated with the high separation efficiency for a variety of proteins within 4 min.  相似文献   

15.
Vinyl ester‐based monoliths are proposed as a new group of stationary phase for CEC. The capillary monolithic columns were prepared by using two vinyl ester monomers, vinyl pivalate (VPV), and vinyl decanoate (VDC) by using ethylene dimethacrylate (EDMA) as the cross‐linking agent, and 2‐acrylamido‐2‐methylpropane sulfonic acid as the charge‐bearing monomer. The monoliths with different pore structures and permeabilities were obtained by varying the type and composition of the porogen mixture containing isoamyl alcohol and 1,4‐butanediol. The electrochromatographic separation of alkylbenzenes was successfully performed by using an acetonitrile/aqueous buffer system as the mobile phase in a CEC system. Vinyl ester monoliths with short alkyl chain length (i.e. poly(VPV‐co‐EDMA) exhibited better separation performance compared with the monolith with long alkyl chain length (i.e. poly(VDC‐co‐EDMA). In the case of VPV‐based monoliths, the theoretical plate numbers higher than 250 000 plates/m were achieved by using a porogen mixture containing 33% v/v of isoamyl alcohol. For both VDC and VPV‐based monoliths, the column efficiency was almost independent of the superficial velocity in the range of 2–12 cm/min.  相似文献   

16.
We examined the use of monolithic capillary columns prepared via ring-opening metathesis polymerization (ROMP) for peptide separation in voltage-assisted capillary LC (voltage-assisted CLC). In order to demonstrate their potential for peptide separation, ROMP-derived monoliths with RP properties were prepared. The preparation procedure of monoliths was transferred from ROMP monoliths optimized for CLC. ROMP monoliths were synthesized within the confines of 200 microm id fused-silica capillaries with a length of 37 cm. After optimization of the chromatographic conditions, the separation performance was tested using a well-defined set of artificial peptides as well as two peptidic mixtures resulting from a tryptic digest of BSA as well as a collagenase digest of collagen. ROMP monoliths showed comparable performance to other monolithic separation media in voltage-assisted CLC published so far. Therefore, we conclude that by optimizing the composition of the ROMP monoliths as well as by using the controlled manner of their functionalization, ROMP monoliths bear a great potential in CLC and CEC.  相似文献   

17.
In this article we described our new approach to the polymer monolith with its morphology tailored for HPLC application to small solutes such as drug candidates. We prepared polymer monoliths based on glycerin 1,3‐dimethacrylate, GDMA with a bicontinuous structure by in situ photoinitiated free radical polymerization (UV irradiation at 365 nm). Our photopolymerization was carried out with a monodispese ultra high molecular weight polystyrene solution in chlorobenzene uniquely formulated as a porogen. The poly‐GDMA monoliths in bulk, rod and capillary thus prepared showed a bicontinuous network‐like structure featured by their fine skeletal thickness nearly in sub μm size. This monolithic structure was considered as a time‐evolved morphology frozen by UV‐irradiation via viscoelastic phase separation induced by the said porogenic polystyrene solution. According to our μHPLC measurement with acetophenone as a model solute, the UV prepared poly‐GDMA capillary demonstrated a much shaper elution profile affording higher column efficiency and permeability as compared with the thermally prepared capillary of the same bore size. Our investigation showed experimentally that poly‐GDMA monoliths with a well‐defined bicontinuous structure could be prepared reproducibly by photoinitiated radical polymerization via viscoelastic phase separation using the said unique porogen. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4651–4673, 2008  相似文献   

18.
Yang W  Sun X  Pan T  Woolley AT 《Electrophoresis》2008,29(16):3429-3435
Developments in biology are increasing demands for rapid, inexpensive, and sensitive biomolecular analysis. In this study, polymer microdevices with monolithic columns and electrophoretic channels were used for biological separations. Glycidyl methacrylate-co-ethylene dimethacrylate monolithic columns were formed within poly(methyl methacrylate) microchannels by in situ photopolymerization. Flow experiments in these columns demonstrated retention and then elution of amino acids under conditions optimized for sample preconcentration. To enhance analyte selectivity, antibodies were immobilized on monoliths, and subsequent lysozyme treatment blocked nonspecific adsorption. The enrichment capability and selectivity of these affinity monoliths were evaluated by purifying fluorescently tagged amino acids from a mixture containing green fluorescent protein (GFP). Twenty-fold enrichment and 91% recovery were achieved for the labeled amino acids, with a >25 000-fold reduction in GFP concentration, as indicated by microchip electrophoresis analysis. These devices should provide a simple, inexpensive, and effective platform for trace analysis in complex biological samples.  相似文献   

19.
Monolithic stationary phases show promise for LC as a result of their good permeability, ease of preparation and broad selectivity. Inorganic silica monoliths have been extensively studied and applied for separation of small molecules. The presence of a large number of through pores and small skeletal structure allows the chromatographic efficiencies of silica monoliths to be comparable to columns packed with 5 μm silica particles, at much lower back pressure. In comparison, organic polymeric monoliths have been mostly used for separation of bio-molecules; however, recently, applications are expanding to small molecules as well. Organic monoliths with high surface areas and fused morphology rather than conventional globular morphology have shown good performance for small molecule separations. Factors such as domain size, through-pore size and mesopore size of the monolithic structures have been found to govern the efficiency of monolithic columns. The structure and performance of monolithic columns are reviewed in comparison to particle packed columns. Studying and characterizing the bed structures of organic monolithic columns can provide great insights into their performance, and aid in structure-directed synthesis of new and improved monoliths.  相似文献   

20.
Porous monoliths are well‐known stationary phases in high‐performance liquid chromatography and capillary electrochromatography. Contrastingly, their use in other types of separation methods such as gas or supercritical fluid chromatography is limited and scarce. In particular, very few studies address the use of monolithic columns in supercritical fluid chromatography. These are limited to silica‐based monoliths and will be covered in this review together with an underlying reason for this trend. The application of monoliths in gas chromatography has received much more attention and is well documented in two reviews by Svec and Kurganov published in 2008 and 2013, respectively. The most recent studies, covered in this review, build on the previous findings and on further understanding of the influence of preparation conditions on porous properties and chromatographic performance of poly(styrene‐co‐divinylbenzene), polymethacrylate, and silica‐based monolithic columns while expanding to polymer‐based monoliths with incorporated metal organic frameworks and to vinylized hybrid silica monoliths. In addition, the potential application of porous layer open tubular monolithic columns in low‐pressure gas chromatography will be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号