首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
A crystallic silver amalgam was found to be a suitable working electrode material for voltammetric determination of electrochemically reducible organic nitro-compounds. Optimum conditions for crystal growth were found, the crystal surface was investigated by atomic force microscopy in tapping mode and single crystals were used for the preparation of quasi-cylindrical single crystal silver amalgam electrode (CAgAE). An electrochemical behavior of this alternative electrode material was investigated in aqueous media by direct current voltammetry, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) using 4-nitrophenol as a model compound. Applicable potential windows of the CAgAE were found comparable with those obtained at a hanging mercury drop electrode, providing high hydrogen overpotential, and polished silver solid amalgam electrode. Thanks to the smooth single crystal electrode surface, the effect of the passivation is not too pronounced, direct DPV determination of 100 μmol l(-1) of 4-nitrophenol at CAgAEs in 0.2 mol l(-1) acetate buffer pH 4.8 provides a RSD around 1.5% (n = 15). DPV calibration curves of 4-nitrophenol are linear in the whole concentration range 1-100 μmol l(-1) with a limit of quantification of 1.5 μmol l(-1). The attempt to increase sensitivity by application of AdSV was not successful. The mechanism of 4-nitrophenol reduction at CAgAE was investigated by CV.  相似文献   

2.
A differential pulse voltammetric (DPV) method was developed for the determination of 4‐nitrophenol (4‐NP) at a newly developed silver amalgam paste electrode (AgA‐PE) in Britton–Robinson buffer pH 3.0. The electrode is based on a disposable plastic pipette tip filled with paste amalgam based on a mixture of mercury and fine silver powder (9 : 1, w/w). The experimental parameters, such as pH of Britton–Robinson buffer and activation and regeneration potential of the electrode surface were optimized. The reduction peak current dependences were linear for the concentration of 4‐NP from 0.2 to 100 μM. The method showed reproducible results with RSD (n=45) of 1.7%. The limit of determination (LOD) was 0.3 μM. The method was successfully applied for the direct determination of 4‐NP in drinking water.  相似文献   

3.
《Electroanalysis》2006,18(2):127-130
The voltammetric behavior of 2‐methyl‐4,6‐dinitrophenol was investigated by differential pulse voltammetry (DPV) at a nontoxic mercury meniscus‐modified silver solid amalgam electrode (m‐AgSAE). Conditions have been found for its determination by DPV at m‐AgSAE in the concentration range of 0.2 to 1 μmol L?1.  相似文献   

4.
《Electroanalysis》2003,15(22):1778-1781
The voltammetric behavior of N,N‐dimethyl‐4‐amino‐2′‐carboxyazobenzene was investigated by differential pulse voltammetry (DPV) at a mercury meniscus‐modified silver solid amalgam electrode (m‐AgSAE). Conditions have been found for its determination by DPV at m‐AgSAE in the concentration range of 0.4 to 15 μmol L?1.  相似文献   

5.
A new simple and direct electroanalytical method was developed for the determination of azidothymidine in commercial pharmaceutical preparations. It is based on differential pulse voltammetry at silver solid amalgam electrode with polished surface (p‐AgSAE) or surface modified by mercury meniscus (m‐AgSAE). The electroreduction of azidothymidine in basic media at these electrodes gives rise to one irreversible cathodic peak. Its potential in 0.05 mol L?1 borate buffer, pH 9.3 at ca. ?1050 mV is comparable to that using hanging mercury drop electrode (HMDE). Achieved limits of quantitation are in the 10?7 mol L?1 concentration range for both amalgam electrodes. According to the procedure based on the standard addition technique, the recoveries of known amounts of azidothymidine contained in pharmaceutical preparations available in capsules were 101.4±1.8% (m‐AgSAE), 100.3±3.5% (p‐AgSAE) and 102.0±1.0% (HMDE) (n=10). There was no significant difference between the values gained by proposed voltammetric methods and the HPLC‐UV recommended by the United States Pharmacopoeia regarding the mean values and standard deviations.  相似文献   

6.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

7.
Yosypchuk B  Novotný L 《Talanta》2002,56(5):971-976
Silver and copper solid amalgam electrodes (modified with mercury meniscus and based on amalgamation of fine metallic powder) have been successfully tested for cathodic stripping voltammetry of cysteine. In the case of the silver solid amalgam electrode AgSAE the relative standard deviation (RSD) and the detection limit (3 SD) reached +/-2.3% and 3x10(-9) mol l(-1) cysteine, respectively.  相似文献   

8.
《Analytical letters》2012,45(15):2339-2363
Abstract

Electrodes based on amalgam materials were re-introduced in electroanalytical chemistry in the year 2000, partially as reaction to unsubstantiated public fears of liquid mercury. In this publication, the voltammetric behavior of 1-nitronaphthalene and 2-nitronaphthalene was investigated at a mercury meniscus-modified silver solid amalgam electrode. The reduction mechanism in mixed neutral buffer-methanol medium includes the four-electron reduction to hydroxylaminoderivative followed by a two-electron reduction to the amine in acidic medium, similarly to mercury electrodes. In alkaline media, both compounds show the splitting of the main four-electron reduction peak typical for mercury electrodes in two new ones, the first one corresponding to a one electron reduction of the nitroderivative to the nitro radical anion, which was confirmed by microcoulometry. Using optimized conditions (differential pulse voltammetry, Britton-Robinson buffer pH 7.0 – methanol (9:1) medium) the calibration dependences are linear in the range of 2·10?7 (4·10?7) to 1·10?4 mol L?1 for 1-nitronaphthalene (2-nitronaphthalene). After preconcentration of the analytes from drinking and river water samples using solid phase extraction the limit of determination was lowered to ~3·10?8 mol L?1.  相似文献   

9.
This work describes a novel type of working electrode for use in voltammetry and polarography — the renewable silver liquid amalgam film–modified silver solid amalgam annular band electrode (AgLAF–AgSAE). The electrode is produced by mechanically refreshing the silver liquid amalgam film (AgLAF) before each measurement. The main constituents of the electrode are: a specially constructed silver solid amalgam annular band electrode (AgSAE), two silicon O-rings, silver liquid amalgam and a polypropylene electrode body. Contaminants from the analyzed solution are removed and the AgSAE surface is covered with a thick layer of fresh amalgam while pulling the AgSAE into the sensor body. During movement in the reverse direction AgLAF is formed and homogenized. The time needed to refresh the film is less than 1 s. The electrode is characterized by excellent surface repeatability (~ 1%) and long-term stability (over ten thousand measurement cycles).  相似文献   

10.
Qijin W  Nianjun Y  Haili Z  Xinpin Z  Bin X 《Talanta》2001,55(3):459-467
The voltammetric behavior of Vitamin B(2) (VB(2)) has been studied at the gold electrode modified with a self-assembled monolayer of l-cysteine. The voltammetric responses are evaluated with respect experimental conditions, such as composition and pH of the supporting electrolyte, concentration of VB(2), accumulation potential and accumulation time. On basis of the voltammetric behavior a highly sensitive method is present for the determination of VB(2) by using linear sweep stripping volammetry. The method is suitable for the determination of VB(2) concentrations between 5.0x10(-11) and 5.0x10(-6) mol l(-1). And the detection limit can be reached to 2.5x10(-11) mol l(-1). The method is applied to determine the concentration of VB(2) in the tablets with satisfactory results.  相似文献   

11.
The cyclic voltammetric behaviour of 8 metal ions at solid silver amalgam electrodes prepared by aging of a thin silver based mercury film electrode (SBMFE) and by deposition of silver and mercury on platinum were investigated. It was established that such electrodes behave in relation to some metals (Pb, Bi, Sn) similarly as silver electrodes i.e. the cyclic curves obtained with these electrodes at concentration 10?3M range show a prepeak-postpeak system corresponding to deposition and dissolution of the monolayer of deposit. On the other hand under the same conditions no prepeaks were observed for cadmium, zinc and thallium. In all cases investigated the heights of anodic stripping peaks were lower on curves obtained with aged SBMFE than on those obtained with fresh SBMFE having a mercury layer 1 μm thick.  相似文献   

12.
利用循环伏安法将银与L-天冬氨酸聚合修饰在玻碳电极表面,制成银掺杂聚L-天冬氨酸修饰电极,研究了多巴胺在此电极上的电化学行为,建立了循环伏安法测定多巴胺的新方法.在磷酸盐缓冲溶液(PBS, pH 7.0)中,扫描速率为50 mV/s时,多巴胺在修饰电极上产生一对氧化还原峰,Epa=0.191 V,Epc=0.161 V.用循环伏安法进行测定时,峰电流与多巴胺浓度分别在3.0×10-7 ~1.0×10-5 mol/L和1.0×10-5 ~5.0×10-4 mol/L内呈良好的线性关系; 检出限为5.0×10-8 mol/L.用于药物和尿样中多巴胺的测定,结果满意.  相似文献   

13.
We report in this work, for the first time, the voltammetric study and the development of an electroanalytical method for the determination of sodium diethyldithiocarbamate (Na-DDC) using solid amalgam electrode fabricated with silver nanoparticles. The experimental parameters were studied and the best voltammetric response was reached when using 0.02 mol L–1 Britton–Robinson buffer (pH = 5.5). Cyclic voltammograms of the substance presented two voltammetric signals: one cathodic peak at Ep = – 0.55 V and one anodic peak at Ep = – 0.49 V. The redox process of Na-DDC showed itself as an adsorption-controlled and quasi-reversible system. A mechanism for this electrochemical reaction was proposed. The analytical studies employed square-wave adsorptive stripping voltammetry (SWAdSV) and were based on the cathodic signal given by Na-DDC. Good linearity was observed in the concentration range from 2.83 × 10–7 mol L–1 to 6.89 × 10–6 mol L–1. The obtained limit of detection was 7.26 × 10–8 mol L–1. The electroanalytical approach described here was successfully employed for the determination of Na-DDC in river water at levels of concentration from 1.46 × 10–7 mol L–1 to 1.46 × 10–6 mol L–1 with good repeatability and reproducibility (RSD values of 4.2% and 5.9%, respectively). The values found during these determinations presented good concordance when compared with the expected values. According to the data presented here, the solid amalgam electrode fabricated with silver nanoparticles may be seen as an effective and green tool for the electrochemical analysis of Na-DDC and also other reducible compounds that usually require mercury-based electrode surfaces.  相似文献   

14.
Electrochemical properties of proguanil were investigated by a voltammetric method (SWV) using a renewable silver amalgam film electrode. The influence of buffer pH as well as potential amplitude, frequency, and step potential was studied. The repeatability, precision and recovery of the developed method were examined. The reduction peak current was used for proguanil voltammetric determination in the range 1×10?7–6×10?6 mol L?1, LOD=2.9×10?8 mol L?1, LOQ=9.7×10?8 mol L?1. The standard addition method was used to determine proguanil in a commercial formulation (Malarone) and in spiked urine.  相似文献   

15.
The paper presents the use of a renewable silver‐amalgam film electrode (Hg(Ag)FE) for the determination of the insecticide thiamethoxam (TMO) in Britton‐Robinson buffer pH 7.0 (LOD=0.25 µg mL?1, LOQ=0.70 µg mL?1) by direct cathodic square‐wave voltammetry (SWV). The voltammetric response for TMO obtained at this electrode was the same as that obtained with a hanging mercury drop electrode, represented by two distinct reduction peaks. Since the electron transfer processes are coupled with chemical reactions involving protons, the SWV signals strongly depend on the pH of the supporting electrolyte. The developed Hg(Ag)FE‐SWV method was tested for the determination of TMO in spiked honey and river water samples, as well as for the determination of its content in the commercial formulation Actara 25 WG.  相似文献   

16.
Ewa Niewiara 《Electroanalysis》2013,25(8):2007-2014
An adsorptive stripping voltammetric (AdSV) procedure for the determination of monobutyltin in aqueous media at a silver liquid amalgam film‐modified silver solid amalgam annular band electrode (AgLAF? AgSAE) is described. Determination of monobutyltin proceeds in two steps. At the beginning monobutyltin ions (BuSn3+) are accumulated from 0.1 M NH4NO3 and 10 % ethanol solution at a potential of ?0.2 V, than the BuSn0 film is preconcentrated at the working electrode surface at a potential of ?0.7 V. After this step the DP AdSV voltammogram is recorded. The analytical parameters and the procedure of the electrode regeneration and activation were optimized. The calibration curve of monobutyltin in the range 0.02–0.30 mg L?1 is linear (r=0.9973). The detection limit for 5 s of preconcentration, calculated as 3σ of the blank was equal to 0.004 mg L?1, repeatability of the peak current was 1.8 % (n=5). Repeatability and sensitivity of monobutyltin determination depends strongly on the analyzed solution properties, measurement conditions and the working electrode quality. The proposed procedure was tested by means of monobutyltin determination in tap waters.  相似文献   

17.
The in-house prepared mercury meniscus modified solid silver amalgam electrode (m-AgSAE) was successfully applied for the detection of organophosphate pesticide tetrachlorvinphos in pH 7 buffer solution. The electrochemical performance of m-AgSAE for the reduction of tetrachlorvinphos was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV), respectively. The surface morphology of solid silver electrode (AgE), as-amalgamated solid silver amalgam electrode (AgSAE), and polished solid silver amalgam electrode (p-AgSAE) was examined by field emission scanning electron microscopy (FESEM). Among the applied techniques, DPV and SWV analysis showed a remarkable increase in the reduction peak current and provided a simple, fast, and sensitive method for the determination of tetrachlorvinphos. The electrochemical impedance spectroscopy (EIS) was used to correlate the electrocatalytic activity of AgSAE, p-AgSAE and m-AgSAE with their interfacial charge transport capabilities. Under the optimized experimental conditions, the DPV and SWV responses were linear over the 1–9 μM and 10–50 μM concentration ranges with a detection limit of 0.06 μM for DPV and 0.04 for SWV. The estimation of tetrachlorvinphos in the ground and waste water samples with the proposed method was in good agreement with that of the added amount. The proposed electrochemical method not only extends the application of non-toxic m-AgSAE, but also offers new possibilities for fast and sensitive analysis of tetrachlorvinphos and its structural analogs in environmental samples.  相似文献   

18.
Baś B  Jakubowska M  Górski Ł 《Talanta》2011,84(4):816-1037
In this work, the design and results of applying silver liquid amalgam film-modified silver solid amalgam annular band electrode (AgLAF-AgSAE), refreshed before each measurement, to voltammetric determination of vitamins C (VC), B1 (VB1) and B2 (VB2) are presented. The method is based on adsorptive accumulation of analytes at the AgLAF-AgSAE in a phosphate buffer (VB1), phosphate buffer with Triton X-100 (VB2) and an alkaline borate buffer with Triton X-100 (VC). The analytical parameters and procedure of electrode activation were optimized. The calibration graphs obtained for vitamins C, B1 and B2 are linear, respectively, for concentration range 0.05-12, 0.01-0.1 and 0.05-3 mg L−1. The detection limits were calculated and equaled 0.02, 0.003 and 0.009 mg L−1, while repeatability of the peak current was 2%, 1% and 3%, respectively. These results are comparable with results obtained for polarographic determination of the same vitamins using mercury electrodes. Finally, the AgLAF-AgSAE was applied to the determination of vitamins in pharmaceutical samples and fruit juices with satisfactory results.  相似文献   

19.
The voltammetric behaviour of coccidiostat robenidine was investigated. The outcomes have revealed that reduction of robenidine causes an appearance of one diffusion-controlled cathodic peak on a static mercury drop electrode (SMDE) and a silver solid amalgam electrode (p-AgSAE). The influence of pH, a supporting electrolyte, a scan rate and accumulation parameters was evaluated. The mechanism of robenidine reduction involving two electrons and one proton was studied for the first time. The calibration curves with the wide linear concentration ranges (more than two concentration orders) were obtained under optimized experimental conditions and operating parameters. The reduction current linearly increases when increasing the concentration of coccidiostat. The methods of voltammetric determination of robenidine in feed and meat have been developed. The limits of quantitation of the methods of robenidine determination in feed are 9.5 mg/kg and 2.5 mg/kg on SMDE and p-AgSAE, respectively. Calculated recoveries ranges of robenidine were between 88.8 % and 101.5 %.  相似文献   

20.
The evaluation of the voltammetric behaviour and the determination of herbicide molinate were performed for the first time over the surface of solid amalgam electrode fabricated with silver nanoparticles using cyclic voltammetry and square-wave voltammetry techniques. The experimental and instrumental parameters were evaluated to reach the maximum analytical response for molinate. It was achieved when a medium composed of 0.04 mol L?1 Britton–Robinson buffer at the pH value of 4.0 was used. Under these conditions, molinate showed one pronounced reduction peak at Ep = ?0.37 V (vs. Ag/AgCl 3 mol L?1) that was characterised as an irreversible system. An analytical curve was constructed at the concentration range from 9.36 to 243.49 µg L?1 and a limit of detection of 2.34 µg L?1 was obtained. The amalgam electrode presented good stability during the measurements with relative standard deviation (RSD) values of 2.9% for the repeatability and 5.4% for the reproducibility. The voltammetric method developed here could be conveniently applied for the determination of molinate in river water and rice spiked samples at levels below those established on the legislations of European Union and Brazil with good accuracy (RSD of less than 5% for all samples). Comparison with HPLC technique was carried out and the results indicated satisfactory concordance. According to the results depicted here, the silver nanoparticles solid amalgam electrode showed itself highly sensitive and an interesting alternative for the routine analysis of molinate in water and food samples. Furthermore, it introduces an environmentally acceptable alternative to the mercury electrodes, most commonly used for determination of reducible pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号