首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The vibrational spectroscopy of the electronically closed-shell (Al 2O 3) n (AlO) (+) cations with n = 1-4 is studied in the 530-1200 cm (-1) range by infrared predissociation spectroscopy of the corresponding ion-He atom complexes in combination with quantum chemical calculations. In all cases we find, assisted by a genetic algorithm, global minimum structures that differ considerably from those derived from known modifications of bulk alumina. The n = 1 and n = 4 clusters exhibit an exceptionally stable conical structure of C 3 v symmetry, whereas for n = 2 and n = 3, multiple isomers of lower symmetry and similar energy may contribute to the recorded spectra. A blue shift of the highest energy absorption band is observed with increasing cluster size and attributed to a shortening of Al-O bonds in the larger clusters. This intense band is assigned to vibrational modes localized on the rim of the conical structures for n = 1 and n = 4 and may aid in identifying similar, highly symmetric structures in larger ions.  相似文献   

2.
This article summarizes the methodological progress that has been made in the vibrational spectroscopy of isolated polynuclear metal oxide clusters, with particular emphasis on free electron laser-based infrared action spectroscopy of gas phase clusters, over the last decade. The possibilities, limitations and prospects of the various experimental approaches are discussed using representative examples from pivotal studies in the field.  相似文献   

3.
Anion photoelectron spectroscopy and quantum chemical calculations at the density functional theory (DFT), coupled cluster theory (CCSD(T)), and complete active space self-consistent field (CASSCF) theory levels are employed to study the reduced transition metal oxide clusters M(4)O(10)(-) (M = Cr, W) and their neutrals. Photoelectron spectra are obtained at 193 and 157 nm photon energies, revealing very different electronic structures for the Cr versus W oxide clusters. The electron affinity and HOMO-LUMO gap are measured to be 3.68 ± 0.05 and 0.7 eV, respectively, for the Cr(4)O(10) neutral cluster, as compared to 4.41 ± 0.04 and 1.3 eV for W(4)O(10). A comprehensive search is performed to determine the ground-state structures for M(4)O(10) and M(4)O(10)(-), in terms of geometry and electronic states by carefully examining the calculated relative energies at the DFT, CCSD(T), and CASSCF levels. The ground states of Cr(4)O(10) and Cr(4)O(10)(-) have tetrahedral structures similar to that of P(4)O(10) with the anion having a lower symmetry due to a Jahn-Teller distortion. The ground states of W(4)O(10) and W(4)O(10)(-) have butterfly shape structures, featuring two fused five-member rings with a metal-metal multiple bond between the central metal atoms. The much stronger WW bonding than the CrCr bonding is found to be the primary cause for the different ground state structures of the reduced Cr(4)O(10)(0/-) versus W(4)O(10)(0/-) oxide clusters. The photoelectron spectra are assigned by comparing the experimental and theoretical adiabatic and vertical electron detachment energies, further confirming the determination of the ground electronic states of M(4)O(10) and M(4)O(10)(-). The time-dependent DFT method is used to calculate the excitation energies of M(4)O(10). The TD-DFT results in combination with the self-consistently calculated vertical detachment energies for some of the excited states at the DFT and CCSD(T) levels are used to assign the higher energy bands. Accurate clustering energies and heats of formation of M(4)O(10) are calculated and used to calculate accurate reaction energies for the reduction of M(4)O(12) to M(4)O(10) by CH(3)OH, as well as for the oxidation of M(4)O(10) to M(4)O(12) by O(2). The performance of the DFT method with the B3LYP and BP86 functionals in the calculations of the relative energies, electron detachment energies, and excitation energies are evaluated, and the BP86 functional is found to give superior results for most of these energetic properties.  相似文献   

4.
The nu(CO) vibrational spectra of planar transition cluster carbonyls containing M(CO)(4) groups are studied. It is possible to anticipate qualitatively, both for the infrared and Raman, the band intensity changes associated with increasing metallic nature of the cluster. These enable a unification of the band patterns shown by the species reported. As for (idealized) spherical clusters, the spherical harmonic model (SHM), suitably modified, becomes of more general applicability as cluster size increases, although for smaller species the tensor harmonic model (THM) makes a contribution.  相似文献   

5.
Size-selected positive ionic silver trimers and pentamers and nickel trimers have been codeposited, at low kinetic energy, with rare gas (Kr) onto a cold transparent surface. They have been neutralized onto the surface by electrons of few eV, with an efficiency of 80±20%. The optical absorption spectra of the resulting matrix-isolated neutral species have been recorded, with good sensitivity, in the UV-visible range. The evaporation of clusters, detected on the atom signal after deposition of Ni trimers of 20 eV, neutralized by electrons of 5 eV, is shown to be roughly 20%. This indicates that Ni3 clusters are present in the matrix but their number is actually too low to be optically detected.  相似文献   

6.
Infrared spectra of methyl iodide clusters produced in a supersonic jet have been observed in the CH3 bending region at 8 mum by cavity ring-down spectroscopy. The dependence of the spectral features on the mixing ratio of CH3I to He and on the stagnation pressure has allowed us to assign the absorption peaks, with the help of the previous results obtained by matrix-isolation technique [Ito et al., Chem. Phys. Lett. 343, 185 (2001)] and infrared cavity ring-down spectroscopy in the C-H stretching region [Ito et al., Chem. Phys. 286, 337 (2003)]. Ab initio calculations at the MP2 level have been carried out up to tetramer to confirm the assignments. It has been found that the frequency shifts upon clustering (relative to monomer) observed in the bending region are not monotonic, in contrast to those in the C-H stretching region. The observed frequency shifts are discussed in terms of dispersion interaction and its variation upon vibrational excitation.  相似文献   

7.
The high-pressure behaviour of (NH(4))(2)V(3)O(8) with the fresnoite structure (P4bm, Z = 2) has been studied at room temperature with single-crystal X-ray diffraction in diamond anvil cells using laboratory and synchrotron facilities. At ambient conditions, the crystal structure is composed of layers of corner-sharing V(5+)O(4) tetrahedra and V(4+)O(5) square pyramids separated by layers of the NH(4)(+) cations. At about 3 GPa, there occurs a reversible first-order phase transition to a three-dimensional structure (P4/mbm, Z = 2) built of corner-sharing V(5+)O(5) trigonal bipyramids and V(4+)O(6) octahedra. The NH(4)(+) cations fill up the interstitial sites in the tunnels formed by the vanadate framework. Up to the phase transition, the a lattice parameter of the low-pressure polymorph does not change while the contraction perpendicular to the stacking of the V(3)O(8) slabs accounts entirely for the bulk compressibility. Above the phase transition, the a lattice parameter slightly expands. The structural features of the high-pressure phase of (NH(4))(2)V(3)O(8) are compared to those of other vanadium oxides.  相似文献   

8.
We apply genetic algorithm combining directly with density functional method to search the potential energy surface of lithium‐oxide clusters (Li2O)n up to n = 8. In (Li2O)n (n = 1–8) clusters, the planar structures are found to be global minimum up to n = 2, and the global minimum structures are all three‐dimensional at n ≥ 3. At n ≥ 4, the tetrahedral unit (TU) is found in most of the stable structures. In the TU, the central Li is bonded with four O atoms in sp3 interactions, which leads to unusual charge transformation, and the probability of the central Li participating in the bonding is higher by adaptive natural density partitioning analysis, so the central Li is in particularly low positive charge. At large cluster size, distortion of structures is viewed, which breaks the symmetry and may make energy higher. The global minimum structures of (Li2O)2, (Li2O)6, and (Li2O)7 clusters are the most stable magic numbers, where the first one is planar and the later both have stable structural units of tetrahedral and C4v. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
11.
Three types of heteropolyvanadates, [(C2H5)4N]4[PdV6O18] (1), [(C2H5)4N]4[Cu2V8O24] (2), and [(C6H5)4P]4[Ni4V10O30(OH)2(H2O)6] (3), were synthesized through the reaction between the [VO3]- anion and metal template cations of Pd(II), Cu(II), and Ni(II). The X-ray crystal structures of 1 (a = 29.952(4) A, b = 12.911(2) A, and c = 13.678(2) A, orthorhombic, space group Pca2(1) with Z = 4), 2 (a = 13.740(1) A, b = 22.488(2) A, c = 18.505(2) A, and beta= 94.058(2) degrees , monoclinic, space group P2(1)/n with Z = 4), and 3 (a = 12.333(2) A, b = 16.208(4) A, c = 16.516(3) A, alpha = 112.438(3) degrees , beta = 94.735(3) degrees , and gamma = 104.749(3) degrees , triclinic, space group P with Z = 1) demonstrate that the metal cationic species induced cyclic [VO3](n-)n (n = 6, 8, 10) ring formation and the cations are incorporated in the rings themselves. In the metal inclusion products, the cyclic vanadates act as macrocyclic ligands, in which the metal cationic species act as the templates. The cyclic vanadate is composed of tetrahedral VO4 units that share corners and incorporates a metal cationic species in the center of the molecules. The bowl-shaped complex 1 includes a Pd2+ cation that is coordinated by the oxygen donors of a boatlike hexavanadate ring. The diamagnetic complex 1 was characterized via 51V and 17O NMR spectroscopy. Complex 2 involves an octavanadate ring and two Cu2+, which are located on both sides of the mean plane as defined by the eight oxygen atoms that bridge the vanadium atoms. In the case of complex 3, the di-mu-hydroxo-bridged Ni2+ dimer with capped Ni2+ aqua ions is formed by hydrolysis to form the decavanadate ring, in which two of the tetrahedral vanadate units are not bonded to the Ni2+ core but supported by hydrogen bonds through the aqua-ligand in the capped Ni2+ cation. Complexes 1-3 in solution were clearly identified by their characteristic isotope patterns using ESI-MS studies.  相似文献   

12.
The structure, stability, and vibrational properties of isolated V2O5 clusters on the Al2O3(0001) surface have been studied by density functional theory and statistical thermodynamics. The most stable structure does not possess vanadyl oxygen atoms. The positions of the oxygen atoms are in registry with those of the alumina support, and both vanadium atoms occupy octahedral sites. Another structure with one vanadyl oxygen atom is only 0.12 eV less stable. Infrared spectra are calculated for the two structures. The highest frequency at 922 cm(-1) belongs to a V-O stretch in the V-O-Al interface bonds, which supports the assignment of such a mode to the band observed around 941 cm(-1) for vanadia particles on alumina. Removal of a bridging oxygen atom from the most stable cluster at the V-O-Al interface bond costs 2.79 eV. Removal of a (vanadyl) oxygen atom from a thin vanadia film on alpha-Al2O3 costs 1.3 eV more, but removal from a V2O5(001) single-crystal surface costs 0.9 eV less. Similar to the V2O5(001) surface, the facile reduction is due to substantial structure relaxations that involve formation of an additional V-O-V bond and yield a pair of V(IV)(d1) sites instead of a V(III)(d2)/V(V)(d0) pair.  相似文献   

13.
The reactive and dissociative behavior of molybdenum and tungsten oxide cluster ions has been studied in the gas phase using a triple quadrupole mass spectrometer. Cluster ions (MO3) n ? were formed via a simple thermal desorption/electron capture negative ionization method, and their structures were characterized by collision-activated dissociation (CAD). Typically, the clusters fragment by losses of neutral (MO3) units. Reactions of the oxide cluster ions with ethylene oxide, cyclohexene oxide, ethylene sulfide cyclohexene sulfide, 2,3-butanedione, and 2,4-pentanedione were examined, and product ions were characterized by CAD. The clusters react with ethylene oxide by addition of ethylene oxide or net addition of oxygen, whereas the clusters react with ethylene sulfide via net addition of one or two sulfur atoms. Reactions of the clusters with the diones result in addition of one or two dione units, in some cases with dehydration.  相似文献   

14.
The structure of SF6 clusters produced in a free jet expansion is studied by electron diffraction methods. A solid phase transition is known to occur when clusters are warmed up by changing several experimental conditions in the expansion of a Ne + SF6 mixture. In the present study, the total stagnation pressure and the SF6 mole fraction are varied in order to understand how these parameters influence the structural state of the clusters and further to observe the phase transition for different cluster sizes. When the stagnation pressurep 0 is larger than about 10 bar, a given mole fraction results in clusters with identical structure and probably identical temperature. Whenp 0 is decreased below 10 bar, identical structures are found for lower and lower mole fractions. This structural behaviour suggests that for small clusters, containing less than about 500 molecules, the transition steps occur at temperatures lower than those observed for larger clusters. The possibility of detecting a temperature variation in the diffraction patterns of small cubic clusters is discussed.  相似文献   

15.
2-(4-Chlorophenyliminomethyl)-8-hydroxyquinoline was synthesized and crystal data was obtained in the orthorhombic space group P-1, with Z=4. Unit cell parameters a=4.744(7) ?, b=9.981(15) ?, c=27.27(4) ? and V=12915(3) ?(3). In this paper the structural properties and vibrational frequencies of 8-hydroxyquinoline derivative, 2CP8HQ, are studied with the B3LYP and HF methods. Two stable conformers are obtained. The calculated frequencies are in good agreement with the experiment results. It is indicated that both of theoretical calculations were suitable for molecular vibrational frequencies study and the scaled B3LYP method was superior to the scaled HF methods.  相似文献   

16.
The adsorption of H2 on a series of gas-phase transition metal (scandium, vanadium, iron, cobalt, and nickel) clusters containing up to 20 metal atoms is studied using IR-multiple photon dissociation spectroscopy complemented with density functional theory based calculations. Comparison of the experimental and calculated spectra gives information on hydrogen-bonding geometries. The adsorption of H2 is found to be exclusively dissociative on Sc(n)O+, V(n)+, Fe(n)+, and Co(n)+, and both atomic and molecularly chemisorbed hydrogen is present in Ni(n)H(m)+ complexes. It is shown that hydrogen adsorption geometries depend on the elemental composition as well as on the cluster size and that the adsorption sites are different for clusters and extended surfaces. In contrast to what is observed for extended metal surfaces, where hydrogen has a preference for high coordination sites, hydrogen can be both 2- or 3-fold coordinated to cationic metal clusters.  相似文献   

17.
S3O, a novel, linear sulfur oxide has been detected in the gas phase by means of neutralization reionization mass spectrometry; the upper limit of stability of acyclic forms of SnO oxides has been set by theoretical calculations.  相似文献   

18.
A novel approach to study the sol-gel phase transition of a brucine–porphyrin based gelator, which uses vibrational circular dichroism (VCD) spectroscopy, is described. The gelation process leading to highly ordered chiral supramolecular assemblies was investigated in various solvents at the different temperatures and concentrations. The VCD spectra sensitively reveal the specific parts of molecule whose configuration is influenced by a sol-gel phase transition and chiral supramolecular aggregation and therefore indicate the parts of the molecule responsible for the chiral self-assembly formation. Temperature stability of the organogel studied is discussed on the basis of the VCD and IR absorption spectra. The scanning electron microscopy was used to visualize the structure of brucine–porphyrin conjugate in the gel phase.  相似文献   

19.
In the work presented here, the way of obtaining the phase with general formula Co3+1.5xCr2–x(VO4)4 (0 ≤ × < 0.4) is demonstrated. A new phase is detected in CrVO4 - Co3V2O8 that is formed in one of the intersection of the ternary CoO - V2O5 - Cr2O3 system. Monophasic Co3Cr2(VO4)4 (Co3+1.5xCr2−x(VO4)4, where × = 0) was obtained from both a mixture comprising CrVO4 and Co3V2O8 as well as from the mixture of CoV2O6 with CoCr2O4. The Co3+1.5xCr2−x(VO4)4 is isotypic with the those demonstrating the lyonsite-type structure. The temperature of melting for the new compound was established using the DTA methods.   相似文献   

20.
《Chemical physics》2003,286(2-3):337-345
Infrared spectra of methyl iodide clusters produced in a supersonic jet have been observed in the C–H stretching region by cavity ring-down spectroscopy. The dependence of the spectra on the mixing ratio of CH3I versus He and on the stagnation pressure has led to a tentative assignment of the absorption peaks to trimer up to pentamer, based on our previous study with matrix isolation technique (Chem. Phys. Lett. 343 (2001) 185). Ab initio calculations at the MP2 level for the trimer and tetramer have shown that two stable isomers exist for the tetramer whereas only one isomer is found to be stable for the trimer. The tentative assignment of the observed spectra has been in qualitative agreement with the results of the calculations. The structure of each isomer and its photochemical relevance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号